198.打家劫舍
力扣题目链接(opens new window)
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
- 示例 1:
- 输入:[1,2,3,1]
- 输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。 偷窃到的最高金额 = 1 + 3 = 4 。
- 示例 2:
- 输入:[2,7,9,3,1]
- 输出:12 解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。 偷窃到的最高金额 = 2 + 9 + 1 = 12 。
提示:
- 0 <= nums.length <= 100
- 0 <= nums[i] <= 400
思路
当前房屋偷与不偷取决于 前一个房屋和前两个房屋是否被偷了。
因此,当前状态和前面状态会有一种依赖关系,那么这种依赖关系都是动规的递推公式。
当然以上是大概思路,打家劫舍是dp解决的经典问题,接下来我们来动规五部曲分析如下:
1.确定dp数组(dp table)以及下标的含义
dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]
2.确定递推公式
决定dp[i]的因素就是第i房间偷还是不偷。
如果偷第i房间,那么dp[i] = dp[i - 2] + nums[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。
如果不偷第i房间,那么dp[i] = dp[i - 1],即考 虑i-1房,(注意这里是考虑,并不是一定要偷i-1房)
然后dp[i]取最大值,即dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
3.dp数组如何初始化
从递推公式dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);可以看出,递推公式的基础就是dp[0] 和 dp[1]
从dp[i]的定义上来讲,dp[0] 一定是 nums[0],dp[1]就是nums[0]和nums[1]的最大值即:dp[1] = max(nums[0], nums[1]);
代码如下:
vector<int> dp(nums.size());
dp[0] = nums[0];
dp[1] = max(nums[0], nums[1]);
4.确定遍历顺序
dp[i] 是根据dp[i - 2] 和 dp[i - 1] 推导出来的,那么一定是从前到后遍历!
代码如下:
for (int i = 2; i < nums.size(); i++) {dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
5.举例推导dp数组
以示例二,输入[2,7,9,3,1]为例。
红框dp[nums.size() - 1]为结果。
以上分析完毕,C++代码如下:
class Solution {
public:int rob(vector<int>& nums) {if (nums.size() == 0) return 0;if (nums.size() == 1) return nums[0];vector<int> dp(nums.size());dp[0] = nums[0];dp[1] = max(nums[0], nums[1]);for (int i = 2; i < nums.size(); i++) {dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);}return dp[nums.size() - 1];}
};
- 时间复杂度: O(n)
- 空间复杂度: O(n)
总结
打家劫舍是DP解决的经典题目也是入门级题目,后面还会变种方式来打劫的。
213.打家劫舍II
力扣题目链接(opens new window)
你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。
给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,能够偷窃到的最高金额。
示例 1:
-
输入:nums = [2,3,2]
-
输出:3
-
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。
-
示例 2:
-
输入:nums = [1,2,3,1]
-
输出:4
-
解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。偷窃到的最高金额 = 1 + 3 = 4 。
-
示例 3:
-
输入:nums = [0]
-
输出:0
提示:
- 1 <= nums.length <= 100
- 0 <= nums[i] <= 1000
思路
这道题目和198.打家劫舍 (opens new window)是差不多的,唯一区别就是成环了。
对于一个数组,成环的话主要有如下三种情况:
- 情况一:考虑不包含首尾元素
- 情况二:考虑包含首元素,不包含尾元素
- 情况三:考虑包含尾元素,不包含首元素
注意我这里用的是"考虑",例如情况三,虽然是考虑包含尾元素,但不一定要选尾部元素! 对于情况三,取nums[1] 和 nums[3]就是最大的。
而情况二 和 情况三 都包含了情况一了,所以只考虑情况二和情况三就可以了。
分析到这里,本题其实比较简单了。 剩下的和力扣题目链接(opens new window)就是一样的了。
代码如下:
// 注意注释中的情况二情况三,以及把198.打家劫舍的代码抽离出来了
class Solution {
public:int rob(vector<int>& nums) {if (nums.size() == 0) return 0;if (nums.size() == 1) return nums[0];int result1 = robRange(nums, 0, nums.size() - 2); // 情况二int result2 = robRange(nums, 1, nums.size() - 1); // 情况三return max(result1, result2);}// 198.打家劫舍的逻辑int robRange(vector<int>& nums, int start, int end) {if (end == start) return nums[start];vector<int> dp(nums.size());dp[start] = nums[start];dp[start + 1] = max(nums[start], nums[start + 1]);for (int i = start + 2; i <= end; i++) {dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);}return dp[end];}
};
- 时间复杂度: O(n)
- 空间复杂度: O(n)
总结
成环之后还是难了一些的, 不少题解没有把“考虑房间”和“偷房间”说清楚。
这就导致大家会有这样的困惑:情况三怎么就包含了情况一了呢? 本文图中最后一间房不能偷啊,偷了一定不是最优结果。
所以我在本文重点强调了情况一二三是“考虑”的范围,而具体房间偷与不偷交给递推公式去抉择。
这样就不难理解情况二和情况三包含了情况一了。
337.打家劫舍III
力扣题目链接(opens new window)
在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。
计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。
思路
这道题目和 198.打家劫舍 (opens new window),213.打家劫舍II (opens new window)也是如出一辙,只不过这个换成了树。
如果对树的遍历不够熟悉的话,那本题就有难度了。
对于树的话,首先就要想到遍历方式,前中后序(深度优先搜索)还是层序遍历(广度优先搜索)。
本题一定是要后序遍历,因为通过递归函数的返回值来做下一步计算。
与198.打家劫舍,213.打家劫舍II一样,关键是要讨论当前节点抢还是不抢。
如果抢了当前节点,两个孩子就不能动,如果没抢当前节点,就可以考虑抢左右孩子(注意这里说的是“考虑”)
暴力递归
代码如下:
class Solution {
public:int rob(TreeNode* root) {if (root == NULL) return 0;if (root->left == NULL && root->right == NULL) return root->val;// 偷父节点int val1 = root->val;if (root->left) val1 += rob(root->left->left) + rob(root->left->right); // 跳过root->left,相当于不考虑左孩子了if (root->right) val1 += rob(root->right->left) + rob(root->right->right); // 跳过root->right,相当于不考虑右孩子了// 不偷父节点int val2 = rob(root->left) + rob(root->right); // 考虑root的左右孩子return max(val1, val2);}
};
- 时间复杂度:O(n^2),这个时间复杂度不太标准,也不容易准确化,例如越往下的节点重复计算次数就越多
- 空间复杂度:O(log n),算上递推系统栈的空间
当然以上代码超时了,这个递归的过程中其实是有重复计算了。
我们计算了root的四个孙子(左右孩子的孩子)为头结点的子树的情况,又计算了root的左右孩子为头结点的子树的情况,计算左右孩子的时候其实又把孙子计算了一遍。
记忆化递推
所以可以使用一个map把计算过的结果保存一下,这样如果计算过孙子了,那么计算孩子的时候可以复用孙子节点的结果。
代码如下:
class Solution {
public:unordered_map<TreeNode* , int> umap; // 记录计算过的结果int rob(TreeNode* root) {if (root == NULL) return 0;if (root->left == NULL && root->right == NULL) return root->val;if (umap[root]) return umap[root]; // 如果umap里已经有记录则直接返回// 偷父节点int val1 = root->val;if (root->left) val1 += rob(root->left->left) + rob(root->left->right); // 跳过root->leftif (root->right) val1 += rob(root->right->left) + rob(root->right->right); // 跳过root->right// 不偷父节点int val2 = rob(root->left) + rob(root->right); // 考虑root的左右孩子umap[root] = max(val1, val2); // umap记录一下结果return max(val1, val2);}
};
- 时间复杂度:O(n)
- 空间复杂度:O(log n),算上递推系统栈的空间
动态规划
在上面两种方法,其实对一个节点 偷与不偷得到的最大金钱都没有做记录,而是需要实时计算。
而动态规划其实就是使用状态转移容器来记录状态的变化,这里可以使用一个长度为2的数组,记录当前节点偷与不偷所得到的的最大金钱。
这道题目算是树形dp的入门题目,因为是在树上进行状态转移,我们在讲解二叉树的时候说过递归三部曲,那么下面我以递归三部曲为框架,其中融合动规五部曲的内容来进行讲解。
- 确定递归函数的参数和返回值
这里我们要求一个节点 偷与不偷的两个状态所得到的金钱,那么返回值就是一个长度为2的数组。
参数为当前节点,代码如下:
vector<int> robTree(TreeNode* cur) {
其实这里的返回数组就是dp数组。
所以dp数组(dp table)以及下标的含义:下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。
所以本题dp数组就是一个长度为2的数组!
那么有同学可能疑惑,长度为2的数组怎么标记树中每个节点的状态呢?
别忘了在递归的过程中,系统栈会保存每一层递归的参数。
如果还不理解的话,就接着往下看,看到代码就理解了哈。
2.确定终止条件
在遍历的过程中,如果遇到空节点的话,很明显,无论偷还是不偷都是0,所以就返回
if (cur == NULL) return vector<int>{0, 0};
这也相当于dp数组的初始化
3.确定遍历顺序
首先明确的是使用后序遍历。 因为要通过递归函数的返回值来做下一步计算。
通过递归左节点,得到左节点偷与不偷的金钱。
通过递归右节点,得到右节点偷与不偷的金钱。
代码如下:
// 下标0:不偷,下标1:偷
vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右
// 中
4.确定单层递归的逻辑
如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; (如果对下标含义不理解就再回顾一下dp数组的含义)
如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);
最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}
代码如下:
vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右// 偷cur
int val1 = cur->val + left[0] + right[0];
// 不偷cur
int val2 = max(left[0], left[1]) + max(right[0], right[1]);
return {val2, val1};
5.举例推导dp数组
以示例1为例,dp数组状态如下:(注意用后序遍历的方式推导)
最后头结点就是 取下标0 和 下标1的最大值就是偷得的最大金钱。
递归三部曲与动规五部曲分析完毕,C++代码如下:
class Solution {
public:int rob(TreeNode* root) {vector<int> result = robTree(root);return max(result[0], result[1]);}// 长度为2的数组,0:不偷,1:偷vector<int> robTree(TreeNode* cur) {if (cur == NULL) return vector<int>{0, 0};vector<int> left = robTree(cur->left);vector<int> right = robTree(cur->right);// 偷cur,那么就不能偷左右节点。int val1 = cur->val + left[0] + right[0];// 不偷cur,那么可以偷也可以不偷左右节点,则取较大的情况int val2 = max(left[0], left[1]) + max(right[0], right[1]);return {val2, val1};}
};
- 时间复杂度:O(n),每个节点只遍历了一次
- 空间复杂度:O(log n),算上递推系统栈的空间
总结
这道题是树形DP的入门题目,通过这道题目大家应该也了解了,所谓树形DP就是在树上进行递归公式的推导。
所以树形DP也没有那么神秘!
只不过平时我们习惯了在一维数组或者二维数组上推导公式,一下子换成了树,就需要对树的遍历方式足够了解!