“国产类 ChatGPT ”所存在的差距与挑战-专家圆桌

内容来源:ChatGPT 及大模型专题研讨会 

转载自CSDN稿件

在经历寒冬、雾霾,甚至大家纷纷看不到希望之际,ChatGPT 犹如一场春雨,给做 AI 甚至 NLP 等研究的人带来了新的希望。

3 月 11 日,由中国人工智能学会主办,中国人工智能学会 NLP 专委会、真格基金、达观数据共同承办,中国信通院云大所支持的「ChatGPT 及大模型专题研讨会」正式举行。在圆桌对话环节,来自学术界、产业界及投资界的知名专家学者,就 ChatGPT 引发的新 AI 浪潮、大模型“基础模型”论、“国产类 ChatGPT ”所存在的差距与挑战展开高端对话。这些专家有:

  • 中国人工智能学会副监事长、清华大学教授马少平

  • 澜舟科技创始人兼 CEO、CCF 中国计算机协会副理事长周明

  • 中科院自动化所研究员、IEEE/ACL Fellow 宗成庆

  • 真格基金管理合伙人戴雨森

  • 华为人工智能科学家、北京邮电大学博士杨浩

  • 中国信通院云计算与大数据研究所人工智能部副主任曹峰(担任主持人)

1.ChatGPT 的火爆给 AI 带来了新希望

主持人(曹峰):ChatGPT 引发火爆关注的原因是什么?引发继 AlphaGo 以后又一轮人工智能的浪潮,究竟有着什么样的价值和意义?

马少平:ChatGPT 能取得成功,个人觉得与这三方面有关系:

  • 第一是意图理解能力,简言之就是对问题理解的突破;

  • 第二是语言生成能力;

  • 第三是多轮对话的管理能力;

从 AlphaGo 可以看到 AI 在专用任务上能做得很好,而现在大模型在相对通用的任务,也表现出色,这可能是引起大家特别关注的原因。

周明:在过去几年,AI 越来越走向寒冬,去年,国内在 AI 领域的投资基本约等于 0,就在大家觉得满眼雾霾时,ChatGPT 给人们带来了希望的光芒,照亮了前进的道路。ChatGPT 的爆火给做 NLP 的人带来了不少信心,说明沿着这条路是肯定有机会能走出来的。

在一次哈工大的鉴定会上,我曾表示:“自然语言是人工智能皇冠上的一颗明珠”。彼时,在场的专家学者觉得这句话对 NLP 在 AI 领域的地位总结的非常精准。所以说,这句话并非出自比尔·盖茨,但比尔·盖茨说完后,我们再出去讲的时候,就起点作用了。

宗成庆:我认为 ChatGPT 引人关注的原因有两方面,一是生活角度,如今人手一部或多部手机,大家都喜欢从网上看一些新鲜的东西;其次是从自然语言处理的角度来看,人们在体验 ChatGPT 的过程中,发现该对话系统生成的句子非常像人话,对比以往的对话系统,ChatGPT 生成的内容的确非常好,效果甚至惊人,而且应用领域也非常广,不管从什么样的领域,包括教育界、法律界、学术界,真正需要的信息咨询都会受到影响,影响的社会面非常大。另外,ChatGPT 对用户的意图理解非常准确,几乎能够准确地把握用户想问的绝大多数问题。

戴雨森:我觉得主要分为三点:

第一,体验门槛特别低,普适性强。以前自动驾驶、AlphaGo,如果不下围棋、不做自动驾驶,人们很难体会到那种神奇。但 ChatGPT,只要是你能说话,就能亲身体会,而且可以应用在很多领域,不只是文本续写或者吟诗作对,具有很强的普适性;

第二,传播性。可以通过简单的聊天截图传播,大量的截图满天飞,让大家发现它有很多神奇的能力;

第三,它给人的想象空间特别大。因为语言是人类思维的一个载体,甚至是思维本身的体现。大家看到 ChatGPT 后会思考,它对自己行业、工作的影响以及如何提效,这种想象力的空间是非常大的。但每个人看到 ChatGPT 都会产生脑洞,这种脑洞会传播、会交流,所以带来更多关注。

杨浩:我这里补充说明一点,ChatGPT 把 AI 对 toB 的链接转换成了 toC 端,人人皆可体验,并且给大家带来很多信心;第二点是很多人工反馈的数据进入系统,会使这个系统更好的演进,所以这个应用场景是更有意义的。比如我们最近在一些 ICT 的场景,网络设备运维日志时,以前假如这个问题不在我的答案里,回答得看上去傻傻地完全不沾边;但是现在发现它的整体意图没什么问题,就可能要补一些领域数据,这提升了普通用户对人工智能的连接,AI 天花板直接拔高了一大截。

2.多种工作或被 ChatGPT 替代但也无需神话

主持人(曹峰):我们看到 ChatGPT 没有太多行业特色或者行业应用趋势,大家能否为我们看看未来在 ChatGPT 以及大模型的驱动下,哪些行业是最有可能得到广泛使用或者可能被颠覆的?

周明:我们公司目前正在做大模型,叫“孟子大模型”,然后我们两条腿走路,左腿是自己真要训练出大模型,右腿是我不管从哪儿拿个大模型,网上扒下来的,或者买的 API 也行,怎么把大模型用好。当然,最后是希望用自己的大模型,自己的大模型用起来之前,最好两条腿分离一点,不要互相绊住了。

训练大模型需要智慧,用大模型也需要智慧,而这两个智慧不一定完全一样。用大模型的人是站在用户角度、行业角度,反过来对大模型提出要求。有时候,大模型的人不停地吹捧大模型必须要大才有效果,但那样是有代价的,大模型也意味着需要太多的服务器。而用户的需求可能并不需要这样的大模型,可能会需要小一点或者弱一点的模型。

首先,如何做好垂直领域的模型,把模型的体积降下来,无需追捧 ChatGPT 这样全智能的能力,在各行各业都有很好的应用。比如金融,金融是非常讲究降本增效的行业,从客服、营销、文案合同审核、智能投研、智能投顾、搜索图谱,所有的东西会认为都要用到大模型,那么一个金融机构最好有一个适合于自己各个业务场景的大模型,这个大模型不一定是 175B 的,有可能是 10B 的甚至 1B 的,但是要针对人家的数据和业务场景,用很容易的接入方式,各个业务部门容易接入到这个大模型中,然后快速提供答案和反馈,再不停地迭代,可能3、5天或1、2个月新的数据来了,再迭代。

第二,ChatGPT 讲究数据自我封闭,2021 年以后的数据就没有了,而这也不适用于金融行业,金融行业需要实时,需要一个可以动态访问金融数据库的接口,动态访问各种营销活动,然后给用户进行快速推荐等。在落地时,需要把大模型跟所有的业务场景全部打开,及时、快速、安全,如果这件事情能够做好的话,金融行业有很多客户可以展开使用。

其它行业也同样的道理,因为它都要对很多的认知智能、自然语言处理理解、问题求解、数据库访问、动态跟踪、客户推荐,其实都有很多同样的内容要求的。所以可以把同样的技术推广开来,来形成对整个业界的影响力。

宗成庆:哪个行业会首先受到冲击,其实这个问题不太好具体回答,因为它可以用到任何一个领域、任何一个行业,都可能会受到冲击。其实最容易被冲击的,是 NLP 研究的人,ChatGPT 一出来,有很多人问我:ChatGPT 做得这么好,你们做 NLP 研究还有什么用?我自己当然不担心失业,一方面 ChatGPT 还没有好到没有问题可研究的地步;另一方面,任何中低端的重复性强的工作被 AI 技术替代,这是不可逆转的趋势。

戴雨森:我有一些小总结:

第一,它是“超级缝合怪”。我们所从事的工作中,有 95% 以上可能都是在做“缝合怪”的事情,比如设计师干的很多事情是把已有的东西缝合在一起,程序员是把已经写过的代码组件缝合在一起,作家是把已经有的很多语料缝合在一起。当生成式模型变得很强大时,未来大家更在意原创东西的价值,要真正原创出 AI 里没有的东西,因为语言模型、扩散模型可以瞬间把全人类已经有的东西缝合在一起,所以第一个问题是“超级缝合怪”的出现导致原创思维特别重要。

第二个,它是超级界面。以前人要适应机器,我们去操作电脑、PC、手机,人类要服从计算机的范式,键盘、鼠标或者触摸屏。但是人最核心的交互其实是语言,每个人都会用语言交流,但是之前跟 Siri 等无法实现真正的自然语言交流,因为卡在语义理解、多轮对话等很多地方,但 ChatGPT 出现后,让我们看到人和机器能够真正交流,不用人更多服从于机器的范式,而是机器更多服从于人的范式。

第三个,超级陪伴。我们在生活中对别人的价值很多时候体现在语言上,现在有陪玩、陪聊,甚至我们从没见过的一个人。最近两年,“元宇宙”的概念很火,但后来发现元宇宙没有意思,因为元宇宙里面没有人,元宇宙是荒芜的。之前大家觉得 Meta human 可能是长得像人,但是实际上最重要的是它要能够像人一样去沟通。所以有人看到 ChatGPT 的聊天记录以后被震惊了,因为在这个过程中看到机器越来越像人,或者越来越难以被区分,这是图灵测试的意义。

在游戏、社交或者针对老年人和小孩的陪护里,人所起到的陪伴性价值演的陪护是能够被替代或者部分被替代,这是之前技术没有实现的目标,现在我们看到了可能的趋势。当然,可能这个脑洞比较大,但是从投资机构的角度来讲,至少 ChatGPT 让我们从以前的不可能,到现在的可能。

杨浩:我觉得接下来被替代的一个肯定是干重复工作的。但是从正面角度来看,只要不停学新的东西,并且尝试做“dirty work”,我们都是看到好的,你找到几个 ChatGPT 不好的 case 了吗?你发现它的不好了吗?它不好在哪个地方?可能的原因是什么?你真的去尝试一下。

现在国内确实有个瓶颈,ChatGPT 带来的算力的瓶颈非常高,真正有能力复现这个模型的人、真正去看问题的人,其实难度很大。那么如何找周围的资源,产学研一起合作,去搭建环境,去分析里面的不好案例是一个很大的突破点。而不是别人说好,你也说好,那你就被淘汰了。别人说好,你找到不好,然后分析这个不好,那就取得更大的突破了。

马少平:对于这个问题,因为我一直在学校,所以相对来说对应用了解得比较少。我想从一个原则来说,就是人工智能的应用原则,我想这个应该是一样的原则:

第一,它万一出现什么大的错误,对我这个系统不会带来什么伤害,刚开始 ChatGPT 出来的时候,人家问我有什么应用,我第一个想到的就是陪老人聊天,聊错了也没关系,哪个电影的主演说错了也关系不大,或者跟游戏有关的,错了也没什么事。

第二个,它作为辅助可以提供一些决策或者几个方案,最终的决策者还是靠使用者自己。我当时举的例子是就像输入法,输入法输入一串拼音,它给你若干个选择,最终是哪个字,由你自己选择,这样的输入法才能用。如果输入法把这句话自动输入进去,没有给你选择权,这个输入法用不了。所以它只是辅助,然后最终决策是靠人在决策。

第三个,具体应用中允许一定的误差,但是这个误差的多少由你自己定,是千分之一还是万分之一,只要在你的原则之内就可以。比如过去出版业精品的水平也就万分之一的错误,包括生产线上产品检测,只要能满足错误率就可以。

具体应用时,第一,满足不满足这些原则,第二,不满足的话,是否有办法或者利用其他知识使其满足。

3.当下大模型还没达到“基础模型”状态

主持人(曹峰):我们也看到李飞飞等科学家把大模型一开始叫“基础模型”,请问几位专家,怎么理解它从“大模型”到“基础模型”这个概念理念上的变化?第二,如果它真正成为基础以后,对技术研发、产业应用、行业推广有其他变化吗?

杨浩:我觉得有两点:

第一点,作为基础模型形成一定的范式,或者现在所有的人工智能模型基本都基于 Transformer,应用的开放瓶颈大幅度降低,推动业界发展。相当于大家学习时把小学变成六年,然后初中三年、高中三年,这个规范化的操作,产生更大的价值。

第二点,它推动上下游行业的提升。比如大家比较关心华为的芯片,在这上面也有一些探索,面向特定算法,在 GPU 和 CPU 之间数据交互时能耗大幅度降低,典型的两个应用,一个是手机续航更长,二是算起来更快、不发烫,所以算法不是越便宜越好,而是越好用越好。有时商业上的很多产品没有学术界产品做得那么精致、那么好,但是就是因为它简单好用。

戴雨森:从我们做投资的角度,觉得有一个基础应用之后就可以做应用和中间层了,这是我们的一个直观感受,这是一个很学术的定义。

比如一个 AI 公司得从头训练自己的模型,然后在里面做垂直整合。今天 ChatGPT 和 OpenAI 很好的做到了 API 化,大家可以很好很快的应用,但不需要自己训练模型,只要调动它的能力就可以。这样带来技术积木化、乐高化的过程,有了这个底座之后可以在上面搭应用,这样对应用场景特别有帮助。

之前大家在学术阶段,现在真正进入到应用、商业阶段,这是我对“基础”的理解,是从学术角度的认知。

宗成庆:这里的“基础模型”是基于网上公开的通用的常识性公开数据训练出来的,类似于一个全科医生,什么都可以干,有头疼感冒了找医生开个药都可以。但是真正用的时候,还得是专科医生去解决问题,尤其是对于一些需要很深专业知识的领域。

周明:我对基础模型有不同的看法,虽然是李飞飞两年前提出来,那时候 ChatGPT 还没有,GPT3 刚出来,所以大家都觉得全世界 N 个基础模型,理想是我们一些牛的大公司把它建好了之后,就跟中国电力一样,这些村就别建自己的水电厂了,大家在我的基础上垒新的应用,想法其实挺好的。

其实到目前为止,即使是 ChatGPT,也不敢称之为是“基础模型”,我给大家讲如下几个观点:

首先,基础模型应该是什么?我觉得至少要满足以下几点:

  • 功能比较强大;

  • 稳定的:比如像电力,不能老停电,否则谁也不敢用;

  • 安全的:任何一个人用,不至于伤害其他人;

  • 合乎伦理道德的:现在 ChatGPT 有很多地方不符合伦理道德。甚至可能符合美国的伦理道德,不符合中国的伦理道德;

  • 还有速度、并发、及时更新等很多地方;

  • 对垂直领域的综合支持;

  • 对用户无代码编程各方面的支持。

我个人认为,现在没有一个模型达到基础模型的状态,所以大家不要迷信 ChatGPT,离李飞飞提出的伟大的理想差得远了。

第二,基础模型确实重要。任何一个国家,像中国这么大的国家,有独特的五千年文化,一定要建立自己的基础模型体系,来实现安全性、并发性等一大堆东西。当下这件事还没有人给你一个定论怎么做,只能靠自己去探索出一套适合于自己国情和市场的基础模型,这是万里长征的第一步。也许从今天再搞 10 年、20 年,才能大概形成一个大家都可以放心、稳定应用的一组基础模型,而不是一个。

马少平:我很同意周老师的观点,我们国家至少得有自己的基础模型。从长远来说,它可能确实某种程度上发展成为一个基础设施,这个基础设施就像电力一样,电力不能靠国外,像以前没有石油的时候得找自己的大庆油田。

4.从追赶到超越,首先得学会平视 OpenAI

主持人(曹峰):最后一个问题,这次 ChatGPT 的诞生,也能看到我们国家跟国外的差距,想请各位专家聊聊我们国家的 ChatGPT 或者大模型目前发展到了什么地步?目前有什么困难?在座有做技术的,有做产业的,也可能是学生,各位分享一下对大家未来的发展建议。

周明:现在是对科技界年轻人、NLP 界一个非常好的阶段,我们这些人都是从事自然语言 30 年以上了,过去简直筚路蓝缕,什么都没有,代码要一行一行写,满眼都是泪,没有一个人支持。

但是今天有大数据、算力的支持,ChatGPT 验证了可行性。而我们强调自主知识产权,所以美国做得再好,也跟我们没关系,我们仍然有广阔的天地去开阔。

所以分享一句寄语给在座的各位,包括投资界、工业界、研究界的朋友们,未来的路还很长!选对了路,勇敢地走下去,就是你的计划!

宗成庆:有人问得更直观,为什么中国没有做出 ChatGPT 来?我说,任何一个高新技术都可以拿过来这样问,譬如,为什么中国没有做出自己的高端芯片?为什么中国没有操作系统?为什么中国没有自己的数据库?我们承认和美国的差距是有的,但我个人认为,自然语言处理这个方向比起其他领域,跟美国的差距要小得多,而且自然语言处理领域在近几年的进步非常大。

当然,原创性的技术是人家的,我们承认这个。从市场应用角度来讲,自然语言处理在中国市场并不落后,包括与美国相比。我们已经有了长足的进步,所以非常有信心做好中国自己的事情。

关键是我们怎么做好?现在的大家太浮躁了,ChatGPT 出来以后,全中国从上到下都在炒这个事情,为什么没有人去炒区块链、元宇宙了?马上一下子都转到 ChatGPT 类研究了。我们应该冷静去思考当下能做什么、什么可以做得更好,不要天天炒那些概念。面向国家需求扎扎实实地做好我们该做的事情才是硬道理。

戴雨森:我想分享几个看法:

第一,投资是个贝叶斯的过程,对世界的认知肯定随着我们对信息的获取而发生变化。在 iPhone 出来之前,投移动互联网和做移动开发的都没戏,当 iPhone 出来后,大家就都投,所以短时间内有浮躁、泡沫、很大的声量是正常的,因为我们对世界的认知、对未来的预估发生很大变化,这很正常,但是我们希望泡沫下面是有啤酒的。我们看到这次技术变革带来了很直接的应用价值,在美国看到了不仅是亚马逊本身,很多已经获得明显的商业化结果,所以我相信这波趋势会很持久,也会很漫长。

第二,要学习赶超 OpenAI,首先要平视 OpenAI。这几个月听到的观点分为两派,一是神化 OpenAI,觉得 OpenAI 很遥远,我们在语料、芯片、算法上都有短板,我们可能做不出来。另一个是速胜论,我们不仅有,而且还有很多这方面的研究,这个月就可以实现甚至是超越 ChatGPT 。

我们从追赶到超越的过程中,我们一开始需要给国产大模型一些时间,首先,我们自己的自然语言模型差距并不大,其次,它不是完全需要非常完美的技术,80 分的模型、90 分的模型、100 分的模型皆有用处,现在我们看到语言模型过一个了阈值,让它能够在很多地方产生作用。我们最近也用了 4、5 个团队的 ChatGPT 产品,虽然有差距,但比之前的尝试要好一些,部分应用已经做起来了。像涌现的能力、思维链等等逐渐开始具备,甚至有的在中文任务上比 ChatGPT 做得好,跟语料和算法有关。

我们现在面临的是一个代沟,而不是跨越不了的鸿沟。我们对未来充满了期待,但肯定这不是一个很快就能见效的事情。我们做天使投资的周期就是 10 年以上长周期投资的,而不是炒股票。

杨浩:说三点关于我自己对 ChatGPT 的想法:

第一点,从垂直领域比较来看,例如机器翻译,发现 ChatGPT 是不如目前专门训练的机器翻译模型;

第二点,我们一直在做质量评估这个事,但是坦诚地说,相对于专业的译员,还有很大的发挥空间,所以我们还有很多机会去做,同样 ChatGPT 也没有解决,所以无需神话它;

第三点是科技向善,ChatGPT 会带动整体上下游以及芯片的思考,我们公司有个“M+D”的生态,Mindspore 深度学习平台。现在大家用 Tensorflow 不多了,Pytorch 比较多,但在真正工业落地上有很多问题。D 是指 D 芯片相关内容,我们有些芯片的价格是对方的四分之一,但是整体性能是它的二分之一,这时候把这批芯片做上去的时候是能有收益的。另外再补充下大模型,华为盘古大模型一开始是基于 D 芯片训练,不完全是基于 GPU ,所以这里面空间很大。

路会越走越宽,相信那些割裂社会、把技术卡断的只是少数人,大家在通过产学研甚至和国内外专家亲密合作的情况下,这条路是越走越宽的。

PS:想观看本次研讨会的小伙伴可以移步「达观数据视频号」查看直播回放。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/13471.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

小祁的笔记

编程题: 输入一个正整数,能够识别输出是几位数。 package cn.qhk;import java.util.Scanner; public class Code_1_1 {//1. 输入一个正整数,能够识别输出是几位数。public static void main(String[]args){Scanner scnew Scanner(System.in…

第61篇:使用chatGPT猜测未知的api接口实现及提交参数|对api接口的进一步利用

Part1 前言 大家好,我是ABC_123,公众号正式更名为”希潭实验室”。今天晚上喝了一大杯青岛的散装原浆啤酒,心情大好,回来之后,和老哥讨论了一个关于Springboot的Actuator信息泄露漏洞的利用,虽然最终没有拿…

某大型啤酒企业:构建网络安全软实力,首选Coremail反钓鱼演练

客户背景 某大型啤酒厂商的公司规模和市场份额多年来始终都处于行业领先地位,积极赞助多项体育赛事,持续丰富和提升品牌形象。作为一家具有全球影响力的企业,自然也成为了全球黑客等攻击团伙的重点目标,而系统攻击的开端便是钓鱼…

50万买只波士顿动力机器狗,只为训练它“尿”啤酒,还让女朋友尝尝

晓查 杨净 发自 凹非寺 量子位 报道 | 公众号 QbitAI 花50万元,买下波士顿动力机器狗,只为训练它“撒尿”,有钱人的世界都这么枯燥了? 著名YouTube科技博主Michael Reeves真的这么做了,他拍的视频发布仅24小时后&#…

GPT专业应用:撰写工作简报

●图片由Lexica 生成,输入:Workers working overtime 工作简报,作为一种了解情况、沟通信息的有效手段,能使上级机关和领导及时了解、掌握所属部门的政治学习、军事训练、行政管理等方面的最新情况;同时,能…

把ChatGPT (野猫),养成家猫(企业专用的ChatGPT)

如何把ChatGPT (野猫),养成家猫(企业专用的ChatGPT) 呢? 我目前的建议是:开发自己的Graph AI (本家丫环),搭配ChatGPT (外来的格格)。丫环的背后,我建了企业KG(知识图谱)来支持Graph AI model 。给最终用户更广的c…

Chatgpt探索分享2:Chatgpt,你身边的“最佳辩友”

正在上传…重新上传取消 ChatGPT云炬学长 公众号:云炬网络 Chatgpt的辩论探索,可以一定程度上提高以下几个方面的能力:1、训练逻辑思辨的能力2、训练系统提问的能力3、训练有效表达的能力在现实生活中,要锻炼以上三种能力&…

Chatgpt探索分享1:如何用chatgpt,两小时内搞懂一个行业

v 正在上传…重新上传取消 ChatGPT云炬学长 1 人赞同了该文章 我个人工作的特点,需要不断地了解新的行业和领域,之前有学习过麦肯锡的“100关键词”的方式,去了解一个全新的领域。不过这个方式时间成本比较高,对搜索能力的要求…

使用chatgpt探索XSS问题

首先问的问题是:XSS的类型有哪些?如何有效地预防? 回答的结果来看,还是比较中规中矩的。 紧接着,第二个问题:“XSS的三种类型的区别是什么?” 只是从形成原理上分析了不同,但是&…

ChatGPT探索系列之五:讨论人工智能伦理问题及ChatGPT的责任

文章目录 前言一、安全二、隐私和道德三、我们应该做什么总结 前言 ChatGPT发展到目前,其实网上已经有大量资料了,博主做个收口,会出一个ChatGPT探索系列的文章,帮助大家深入了解ChatGPT的。整个系列文章会按照一下目标来完成&am…

ChatGPT 探索:Code Interpreter 高级指南;OpenAI发布ChatGPT的代码解释器功能

🦉 AI新闻 🚀 OpenAI发布ChatGPT的代码解释器功能,提供更好的交互式编程体验和数据可视化功能 摘要:OpenAI推出了ChatGPT的新功能——代码解释器,为用户提供更好的交互式编程体验和强大的数据可视化功能。用户只需用…

ChatGPT 出现报错 ERROR: Too many requests in 1 hour. Try again later.我的解决方法,2023 1月8日

下面这个方法我试了没用 首先,需要清空你自己用浏览器的cookies,我用的edage,点击设置 然后clash启用TUN模式,注意不要选香港,选欧美国家 然后登录chatgpt进去就行了,可以一直问了 最近人好多,…

又有新动作 ChatGPT推出插件功能,并开源

北美时间3月23日,Open AI在官网宣布推出ChatGPT插件功能,同时开源知识库检索插件源代码!(插件申请地址:https://openai.com/waitlist/plugins)欢迎使用体验【V起来助手】ChatGPT插件、AI单聊、AI作画等等&a…

ChatGPT来个一探究竟

ChatGPT简介ChatGPT使用场景ChatGPT如何实现智能ChatGPT影响ChatGPT发展趋势ChatGPT发展方向我们对ChatGPT发展的担忧ChatGPT各大公司应对ChatGPT骗局 1.ChatGPT简介 Chat 是聊天,而GPT是Generative Pretrained Transformer的缩写:预训练生成模型。因此…

pycharm安装gensim扩展包(镜像)【已成功安装】

安装gensim扩展包需要先安装numpy和scipy,安装顺序:numpy>scripy>gensim。 gensim有三种安装选择:A:应用内pip直接安装;B:gensim官网下载安装;C:镜像安装。前两种都很慢&…

ChatGPT智能聊天系统1.0.3版本发布啦~

ChatGPT智能聊天系统1.0.3版本啦!主要更新内容如下: 新增功能 获取微信昵称 支付宝支付 PC端允许退出登录 PC端创作和技能支持关键词搜索 分享记录添加今日分享统计 邀请记录添加今日邀请和今日发放统计 细节优化 模型对话框去掉快递发送功能 后…

独立开发变现周刊(第85期):一个会员服务的SaaS,月收入2万美金

分享独立开发、产品变现相关内容,每周五发布。 目录 1、Obsidian Canvas:一个无限的空间来构建你的想法2、message-pusher: 搭建专属于你的消息推送服务3、Careerflow LinkedIn: 40倍提升你的工作机会4、vue-pure-admin: 一款开源后台管理系统5、一个提供…

升空3分钟后爆炸!SpaceX星舰发射失败;特斯拉中国工厂普通工人月薪1万块;机器人加班也会“猝死” | EA周报...

EA周报 2023年4月21日 每个星期1分钟,元宝带你喝一杯IT人的浓缩咖啡,了解天下事、掌握IT核心技术。 周报看点 1、杭州一家公司开出20万月薪抢人!ChatGPT掀起AI热潮人才被爆抢 2、SpaceX「星舰」发射任务失败,星舰未能与重型助推器…

特斯拉中国工厂普通工人月薪1万块;OpenAI招聘移动工程师,手机或成AI新入口;Fuchsia F10发布|极客头条...

「极客头条」—— 技术人员的新闻圈! CSDN 的读者朋友们早上好哇,「极客头条」来啦,快来看今天都有哪些值得我们技术人关注的重要新闻吧。 整理 | 梦依丹 出品 | CSDN(ID:CSDNnews) 一分钟速览新闻点&#…