YOLOv11实时目标检测 | 摄像头视频图片文件检测

在上篇文章中YOLO11环境部署 || 从检测到训练https://blog.csdn.net/2301_79442295/article/details/145414103#comments_36164492,我们详细探讨了YOLO11的部署以及推理训练,但是评论区的观众老爷就说了:“博主博主,你这个只能推理只能推理图片,还要将图片放在文件夹下,有没有更简单方便的推理方法?” 有的兄弟,有的,像这样更简单的方法还有10086个,下面我挑一个用于流式视频文件检测。

摄像头视频图片文件检测

  • 视频文件
  • 图片文件
  • 效果如下
    • 视频与摄像头
    • 图片文件

视频文件

对于视频或者摄像头等输入,可以将以下代码复制到predict_camera.py运行检测:

from ultralytics import YOLO
import cv2
import torch
from pathlib import Path
import sys
import os
import tkinter as tk
from tkinter import filedialogdef choose_input_source():print("请选择输入来源:")print("[1] 摄像头")print("[2] 视频文件")choice = input("请输入数字 (1 或 2): ").strip()if choice == "1":return 0, "摄像头"elif choice == "2":#选择视频文件root = tk.Tk()root.withdraw()video_path = filedialog.askopenfilename(title="选择视频文件",filetypes=[("视频文件", "*.mp4;*.avi;*.mkv;*.mov"), ("所有文件", "*.*")])if not video_path:print("未选择视频文件,程序退出")sys.exit(0)return video_path, video_pathelse:print("无效的输入,程序退出")sys.exit(1)def detect_media():# ======================= 配置区 =======================# 模型配置model_config = {'model_path': r'E:\git-project\YOLOV11\ultralytics-main\weights\yolo11n.pt',  # 本地模型路径,注意配置!!!!!!!!!!!!!!!!!!!!!!!'download_url': 'https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt'  # 如果没有模型文件下载URL}# 推理参数predict_config = {'conf_thres': 0.25,     # 置信度阈值'iou_thres': 0.45,      # IoU阈值'imgsz': 640,           # 输入分辨率'line_width': 2,        # 检测框线宽'device': 'cuda:0' if torch.cuda.is_available() else 'cpu'  # 自动选择设备}# ====================== 配置结束 ======================try:# 选择输入来源input_source, source_desc = choose_input_source()# 初始化视频源cap = cv2.VideoCapture(input_source)if isinstance(input_source, int):# 如果使用摄像头,设置分辨率cap.set(cv2.CAP_PROP_FRAME_WIDTH, 720)cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)if not cap.isOpened():raise IOError(f"无法打开视频源 ({source_desc}),请检查设备连接或文件路径。")# 询问是否保存推理出的视频文件save_video = Falsevideo_writer = Noneoutput_path = Noneanswer = input("是否保存推理出的视频文件?(y/n): ").strip().lower()if answer == "y":save_video = True# 创建保存目录:代码文件所在目录下的 predict 文件夹save_dir = os.path.join(os.getcwd(), "predict")os.makedirs(save_dir, exist_ok=True)# 获取视频属性(宽度、高度、fps)frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))fps = cap.get(cv2.CAP_PROP_FPS)if fps == 0 or fps is None:fps = 25  # 如果无法获取fps,设定默认值# 构造输出视频文件路径output_path = os.path.join(save_dir, "output_inference.mp4")fourcc = cv2.VideoWriter_fourcc(*"mp4v")video_writer = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))print(f"推理视频将保存至: {output_path}")# 加载模型(带异常捕获)if not Path(model_config['model_path']).exists():if model_config['download_url']:print("开始下载模型...")YOLO(model_config['download_url']).download(model_config['model_path'])else:raise FileNotFoundError(f"模型文件不存在: {model_config['model_path']}")# 初始化模型model = YOLO(model_config['model_path']).to(predict_config['device'])print(f"✅ 模型加载成功 | 设备: {predict_config['device'].upper()}")print(f"输入来源: {source_desc}")# 实时检测循环while True:ret, frame = cap.read()if not ret:print("视频流结束或中断")break# 执行推理results = model.predict(source=frame,stream=True,  # 流式推理verbose=False,conf=predict_config['conf_thres'],iou=predict_config['iou_thres'],imgsz=predict_config['imgsz'],device=predict_config['device'])# 遍历生成器获取结果(取第一个结果)for result in results:annotated_frame = result.plot(line_width=predict_config['line_width'])break# 摄像头模式下显示FPSif isinstance(input_source, int):fps = cap.get(cv2.CAP_PROP_FPS)cv2.putText(annotated_frame, f'FPS: {fps:.2f}', (10, 30),cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)# 显示实时画面cv2.imshow('YOLO Real-time Detection', annotated_frame)# 如保存视频,写入视频文件if save_video and video_writer is not None:video_writer.write(annotated_frame)# 按键退出qif cv2.waitKey(1) & 0xFF == ord('q'):break# 释放资源cap.release()if video_writer is not None:video_writer.release()cv2.destroyAllWindows()print("✅ 检测结束")if save_video and output_path is not None:print(f"推理结果视频已保存至: {output_path}")except Exception as e:print(f"\n❌ 发生错误: {str(e)}")print("问题排查建议:")print("1. 检查视频源是否正确连接或文件路径是否正确")print("2. 确认模型文件路径正确")print("3. 检查CUDA是否可用(如需GPU加速)")print("4. 尝试降低分辨率设置")if __name__ == "__main__":detect_media()

需要更改的参数:
1.model_path:模型文件位置,默认使用的是yolo11n.pt
2.predict_config下置信度等
3.分辨率等
需要注意的是退出按q,点击视频框的×是无法退出的,当然也可以使用Ctrl+C方式退出,退出不会造成摄像头不保存推理文件,文件保存在代码所在文件夹下predict文件夹内。

图片文件

对于图片文件,将图片放在picture文件夹下太麻烦,同样采用选择图片进行检测,同时可以框选多个图片,可以将以下代码复制到predict_images.py运行检测:

from ultralytics import YOLO
import cv2
import torch
from pathlib import Path
import os
import tkinter as tk
from tkinter import filedialogdef choose_input_files():root = tk.Tk()root.withdraw()  # 隐藏主窗口image_paths = filedialog.askopenfilenames(title="选择图片文件",filetypes=[("图片文件", "*.jpg;*.jpeg;*.png;*.bmp;*.tiff;*.gif"), ("所有文件", "*.*")])if not image_paths:print("未选择任何图片文件,程序退出")exit(0)return image_pathsdef detect_images():# ======================= 配置区 =======================# 模型配置model_config = {'model_path': r'E:\git-project\YOLOV11\ultralytics-main\weights\yolo11n.pt',  # 本地模型路径'download_url': 'https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt'  # 如果没有模型文件可在此处添加下载URL}# 推理参数predict_config = {'conf_thres': 0.25,     # 置信度阈值'iou_thres': 0.45,      # IoU阈值'imgsz': 640,           # 输入分辨率'line_width': 2,        # 检测框线宽'device': 'cuda:0' if torch.cuda.is_available() else 'cpu'  # 自动选择设备}# ====================== 配置结束 ======================try:# 选择图片文件image_paths = choose_input_files()# 创建保存目录:代码文件所在目录下的 predict 文件夹save_dir = os.path.join(os.getcwd(), "predict", "exp")os.makedirs(save_dir, exist_ok=True)if os.path.exists(save_dir):i = 1while os.path.exists(f"{save_dir}{i}"):i += 1save_dir = f"{save_dir}{i}"os.makedirs(save_dir)# 加载模型(带异常捕获)if not Path(model_config['model_path']).exists():if model_config['download_url']:print("开始下载模型...")YOLO(model_config['download_url']).download(model_config['model_path'])else:raise FileNotFoundError(f"模型文件不存在: {model_config['model_path']}")# 初始化模型model = YOLO(model_config['model_path']).to(predict_config['device'])print(f"✅ 模型加载成功 | 设备: {predict_config['device'].upper()}")# 处理每个选定的图片文件for image_path in image_paths:print(f"正在处理图片: {image_path}")img = cv2.imread(image_path)if img is None:print(f"无法读取图片: {image_path}")continue# 执行推理results = model.predict(source=img,  # 输入图片stream=False,  # 禁用流模式verbose=False,conf=predict_config['conf_thres'],iou=predict_config['iou_thres'],imgsz=predict_config['imgsz'],device=predict_config['device'])# 解析并绘制结果(取第一个结果)for result in results:annotated_img = result.plot(line_width=predict_config['line_width'])break# 保存推理结果图像到文件output_image_path = os.path.join(save_dir, f"output_{os.path.basename(image_path)}")cv2.imwrite(output_image_path, annotated_img)print(f"推理结果已保存至: {output_image_path}")# 显示实时画面,取消下面注释就会边检测边弹出结果# cv2.imshow('YOLO Real-time Detection', annotated_img)# 等待按键退出当前图片查看if cv2.waitKey(0) & 0xFF == ord('q') :breakcv2.destroyAllWindows()print("✅ 检测结束")except Exception as e:print(f"\n❌ 发生错误: {str(e)}")print("问题排查建议:")print("1. 检查图片文件路径是否正确")print("2. 确认模型文件路径正确")print("3. 检查CUDA是否可用(如需GPU加速)")print("4. 尝试降低分辨率设置")if __name__ == "__main__":detect_images()

同样需要更改模型文件地址、置信度等,图片文件保存在代码文件夹的predict文件夹下exp中,如果想要检测时就查看图片,可以将这段代码取消注释:

            # 显示实时画面cv2.imshow('YOLO Real-time Detection', annotated_img)

效果如下

视频与摄像头

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

图片文件

在这里插入图片描述
在这里插入图片描述
所有推理出的文件都会在代码同级的predict目录下,按q退出。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/13673.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用Python获取股票数据并实现未来收盘价的预测

获取数据 先用下面这段代码获取上证指数的历史数据,得到的csv文件数据,为后面训练模型用的 import akshare as ak import pandas as pd# 获取上证指数历史数据 df ak.stock_zh_index_daily(symbol"sh000001")# 将数据保存到本地CSV文件 df.…

RK3576——USB3.2 OTG无法识别到USB设备

问题:使用硬盘接入到OTG接口无热插拔信息,接入DP显示屏无法正常识别到显示设备,但是能通过RKDdevTool工具烧录系统。 问题分析:由于热插拔功能实现是靠HUSB311芯片完成的,因此需要先确保HUSB311芯片驱动正常工作。 1. …

RabbitMQ深度探索:前置知识

消息中间件: 消息中间件基于队列模式实现异步 / 同步传输数据作用:可以实现支撑高并发、异步解耦、流量削峰、降低耦合 传统的 HTTP 请求存在的缺点: HTTP 请求基于响应的模型,在高并发的情况下,客户端发送大量的请求…

maven如何不把依赖的jar打包到同一个jar?

spring boot项目打jar包部署: 经过以下步骤, 最终会形成maven依赖的多个jar(包括lib下添加的)、 我们编写的程序代码打成一个jar,将程序jar与 依赖jar分开,便于管理: success: 最终…

网络工程师 (21)网络的性能

一、速率(数据率或比特率) 定义:数据在数字信道上传送的速率,通常以比特每秒(bps)为单位。常见的速率单位还有千比特每秒(kbit/s)、兆比特每秒(Mbit/s)和吉比…

UE5 蓝图学习计划 - Day 14:搭建基础游戏场景

在上一节中,我们 确定了游戏类型,并完成了 项目搭建、角色蓝图的基础设置(移动)。今天,我们将进一步完善 游戏场景,搭建 地形、墙壁、机关、触发器 等基础元素,并添加角色跳跃功能,为…

计算机毕业设计hadoop+spark+hive民宿推荐系统 酒店推荐系统 民宿价格预测 酒店价预测 机器学习 深度学习 Python爬虫 HDFS集群

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…

金蝶云星空k3cloud webapi报“java.lang.Class cannot be cast to java.lang.String”的错误

最近在对接金蝶云星空k3cloud webapi时,报一个莫名其妙的转换异常,具体如下: 同步部门异常! ERP接口登录异常:java.lang.Class cannot be cast to java.lang.String at com.jkwms.k3cloudSyn.service.basics.DeptK3CloudService.…

html的字符实体和颜色表示

在HTML中,颜色可以通过以下几种方式表示,以下是具体的示例: 1. 十六进制颜色代码 十六进制颜色代码以#开头,后面跟随6个字符,每两个字符分别表示红色、绿色和蓝色的强度。例如: • #FF0000:纯红…

老游戏回顾:G2

一个老的RPG游戏。 剧情有独到之处。 ------- 遥远的过去,古拉纳斯将希望之光给予人们,人类令希望之光不断扩大,将繁荣握在手中。 但是,暗之恶魔巴鲁玛将光从人类身上夺走。古拉纳斯为了守护人类与其展开了一场激战&#xff0c…

E4982A,keysight是德科技台式LCR表

是德科技keysightE4982A台式LCR表 是德KEYSIGHT的精密型LCR表E4982A,针对SMD电感器、EMI滤波器等无源元器件的制造测试展现出卓越性能,特别适用于1 MHz至3 GHz高频率范围内的阻抗测试。此外,E4982A还广泛应用于研发领域,凭借其强…

C++, STL容器 array:固定大小数组深度解析

文章目录 引言一、设计哲学与底层实现1.1 零抽象成本的封装1.2 性能特征二、内存优化实践2.1 缓存友好性对比2.2 内存碎片防护三、高级内存管理技巧3.1 精准内存对齐3.2 内存复用模式四、工程实践指南4.1 适用场景4.2 陷阱规避五、未来演进结语引言 在C++标准库中,std::array…

013-51单片机红外遥控器模拟控制空调,自动制冷制热定时开关

主要功能是通过红外遥控器模拟控制空调,可以实现根据环境温度制冷和制热,能够通过遥控器设定温度,可以定时开关空调。 1.硬件介绍 硬件是我自己设计的一个通用的51单片机开发平台,可以根据需要自行焊接模块,这是用立创…

(苍穹外卖)项目结构

苍穹外卖项目结构 后端工程基于 maven 进行项目构建,并且进行分模块开发。 1). 用 IDEA 打开初始工程,了解项目的整体结构: 对工程的每个模块作用说明: 序号名称说明1sky-take-outmaven父工程,统一管理依赖版本&…

车载以太网__传输层

车载以太网中,传输层和实际用的互联网相差无几。本篇文章对传输层中的IP进行介绍 目录 什么是IP? IP和MAC的关系 IP地址分类 私有IP NAT DHCP 为什么要防火墙穿透? 广播 本地广播 直接广播 本地广播VS直接广播 组播 …

UE5 蓝图学习计划 - Day 12:存储与加载

在游戏开发中,存储(Save)与加载(Load) 系统至关重要,玩家需要能够保存游戏进度、角色状态、道具数据等信息,并在下次启动游戏时恢复它们。UE5 提供了 SaveGame 蓝图类,帮助开发者快速…

web-文件上传-CTFHub

前言 在众多的CTF平台当中,作者认为CTFHub对于初学者来说,是入门平台的不二之选。CTFHub通过自己独特的技能树模块,可以帮助初学者来快速入门。具体请看官方介绍:CTFHub。 作者更新了CTFHub系列,希望小伙伴们多多支持…

OpenAI 实战进阶教程 - 第四节: 结合 Web 服务:构建 Flask API 网关

目标 学习将 OpenAI 接入 Web 应用,构建交互式 API 网关理解 Flask 框架的基本用法实现 GPT 模型的 API 集成并返回结果 内容与实操 一、环境准备 安装必要依赖: 打开终端或命令行,执行以下命令安装 Flask 和 OpenAI SDK: pip i…

【Elasticsearch】nested聚合

在 Elasticsearch 中,嵌套聚合(nestedaggregation)的语法形式用于对嵌套字段(nestedfields)进行聚合操作。嵌套字段是 Elasticsearch 中的一种特殊字段类型,用于存储数组中的对象,这些对象需要独…

基于Qt的Ribbon界面框架

推荐一套基于Qt的Ribbon风格的界面框架,SARibbon。 Ribbon风格较传统的软件风格(菜单栏,工具栏)相比,具有直观性,高校性等优点,可以快速的找到所需工具,减少使用次数。微软的office…