1、RocketMQ概述

第1章 RocketMQ概述
一、MQ概述
1、MQ简介
MQ,Message Queue,是一种提供消息队列服务的中间件,也称为消息中间件,是一套提供了消息生
产、存储、消费全过程API的软件系统。消息即数据。一般消息的体量不会很大。
2、MQ用途
从网上可以查看到很多的关于MQ用途的叙述,但总结起来其实就以下三点。
限流削峰
MQ可以将系统的超量请求暂存其中,以便系统后期可以慢慢进行处理,从而避免了请求的丢失或系统
被压垮。
在这里插入图片描述
异步解耦
上游系统对下游系统的调用若为同步调用,则会大大降低系统的吞吐量与并发度,且系统耦合度太高。
而异步调用则会解决这些问题。所以两层之间若要实现由同步到异步的转化,一般性做法就是,在这两
层间添加一个MQ层。
在这里插入图片描述
数据收集
分布式系统会产生海量级数据流,如:业务日志、监控数据、用户行为等。针对这些数据流进行实时或
批量采集汇总,然后对这些数据流进行大数据分析,这是当前互联网平台的必备技术。通过MQ完成此
类数据收集是最好的选择。

3、常见MQ产品
ActiveMQ
ActiveMQ是使用Java语言开发一款MQ产品。早期很多公司与项目中都在使用。但现在的社区活跃度已
经很低。现在的项目中已经很少使用了。
RabbitMQ
RabbitMQ是使用ErLang语言开发的一款MQ产品。其吞吐量较Kafka与RocketMQ要低,且由于其不是
Java语言开发,所以公司内部对其实现定制化开发难度较大。
Kafka
Kafka是使用Scala/Java语言开发的一款MQ产品。其最大的特点就是高吞吐率,常用于大数据领域的实
时计算、日志采集等场景。其没有遵循任何常见的MQ协议,而是使用自研协议。对于Spring Cloud
Netç ix,其仅支持RabbitMQ与Kafka。
RocketMQ
RocketMQ是使用Java语言开发的一款MQ产品。经过数年阿里双11的考验,性能与稳定性非常高。其
没有遵循任何常见的MQ协议,而是使用自研协议。对于Spring Cloud Alibaba,其支持RabbitMQ、
Kafka,但提倡使用RocketMQ。

二、RocketMQ概述
1、RocketMQ简介
在这里插入图片描述
RocketMQ是一个统一消息引擎、轻量级数据处理平台。
RocketMQ是⼀款阿⾥巴巴开源的消息中间件。2016年11⽉28⽇,阿⾥巴巴向 Apache 软件基⾦会捐赠
RocketMQ,成为 Apache 孵化项⽬。2017 年 9 ⽉ 25 ⽇,Apache 宣布 RocketMQ孵化成为 Apache 顶
级项⽬(TLP ),成为国内⾸个互联⽹中间件在 Apache 上的顶级项⽬。

2、RocketMQ发展历程
在这里插入图片描述
2007年,阿里开始五彩石项目,Notify作为项目中交易核心消息流转系统,应运而生。Notify系统是
RocketMQ的雏形。
2010年,B2B大规模使用ActiveMQ作为阿里的消息内核。阿里急需一个具有海量堆积能力的消息系
统。
2011年初,Kafka开源。淘宝中间件团队在对Kafka进行了深入研究后,开发了一款新的MQ,MetaQ。
2012年,MetaQ发展到了v3.0版本,在它基础上进行了进一步的抽象,形成了RocketMQ,然后就将其
进行了开源。
2015年,阿里在RocketMQ的基础上,又推出了一款专门针对阿里云上用户的消息系统Aliware MQ。
2016年双十一,RocketMQ承载了万亿级消息的流转,跨越了一个新的里程碑。11⽉28⽇,阿⾥巴巴
向 Apache 软件基⾦会捐赠 RocketMQ,成为 Apache 孵化项⽬。
2017 年 9 ⽉ 25 ⽇,Apache 宣布 RocketMQ孵化成为 Apache 顶级项⽬(TLP ),成为国内⾸个互联
⽹中间件在 Apache 上的顶级项⽬。

第2章 RocketMQ的基本概念
一、基本概念
1 消息(Message)
消息是指,消息系统所传输信息的物理载体,生产和消费数据的最小单位,每条消息必须属于一个主
题。
2 主题(Topic)
在这里插入图片描述
3 标签(Tag)
为消息设置的标签,用于同一主题下区分不同类型的消息。来自同一业务单元的消息,可以根据不同业
务目的在同一主题下设置不同标签。标签能够有效地保持代码的清晰度和连贯性,并优化RocketMQ提
供的查询系统。消费者可以根据Tag实现对不同子主题的不同消费逻辑,实现更好的扩展性。
Topic是消息的一级分类,Tag是消息的二级分类。
Topic:货物
tag=上海
tag=江苏
tag=浙江
------- 消费者 -----
topic=货物 tag = 上海
topic=货物 tag = 上海|浙江
topic=货物 tag = *
4 队列(Queue)
存储消息的物理实体。一个Topic中可以包含多个Queue,每个Queue中存放的就是该Topic的消息。一
个Topic的Queue也被称为一个Topic中消息的分区(Partition)。
一个Topic的Queue中的消息只能被一个消费者组中的一个消费者消费。一个Queue中的消息不允许同
一个消费者组中的多个消费者同时消费。
在这里插入图片描述
在学习参考其它相关资料时,还会看到一个概念:分片(Sharding)。分片不同于分区。在RocketMQ
中,分片指的是存放相应Topic的Broker。每个分片中会创建出相应数量的分区,即Queue,每个
Queue的大小都是相同的。
在这里插入图片描述
5 消息标识(MessageId/Key)
RocketMQ中每个消息拥有唯一的MessageId,且可以携带具有业务标识的Key,以方便对消息的查询。
不过需要注意的是,MessageId有两个:在生产者send()消息时会自动生成一个MessageId(msgId),
当消息到达Broker后,Broker也会自动生成一个MessageId(offsetMsgId)。msgId、offsetMsgId与key都
称为消息标识。
msgId:由producer端生成,其生成规则为:
producerIp + 进程pid + MessageClientIDSetter类的ClassLoader的hashCode +
当前时间 + AutomicInteger自增计数器
offsetMsgId:由broker端生成,其生成规则为:brokerIp + 物理分区的offset(Queue中的
偏移量)
key:由用户指定的业务相关的唯一标识

二、系统架构
在这里插入图片描述
RocketMQ架构上主要分为四部分构成:
1 Producer
消息生产者,负责生产消息。Producer通过MQ的负载均衡模块选择相应的Broker集群队列进行消息投
递,投递的过程支持快速失败并且低延迟。
例如,业务系统产生的日志写入到MQ的过程,就是消息生产的过程
再如,电商平台中用户提交的秒杀请求写入到MQ的过程,就是消息生产的过程
RocketMQ中的消息生产者都是以生产者组(Producer Group)的形式出现的。生产者组是同一类生产
者的集合,这类Producer发送相同Topic类型的消息。一个生产者组可以同时发送多个主题的消息。
2 Consumer
消息消费者,负责消费消息。一个消息消费者会从Broker服务器中获取到消息,并对消息进行相关业务
处理。
例如,QoS系统从MQ中读取日志,并对日志进行解析处理的过程就是消息消费的过程。
再如,电商平台的业务系统从MQ中读取到秒杀请求,并对请求进行处理的过程就是消息消费的
过程。
RocketMQ中的消息消费者都是以消费者组(Consumer Group)的形式出现的。消费者组是同一类消
费者的集合,这类Consumer消费的是同一个Topic类型的消息。消费者组使得在消息消费方面,实现
负载均衡(将一个Topic中的不同的Queue平均分配给同一个Consumer Group的不同的Consumer,注
意,并不是将消息负载均衡)和容错(一个Consmer挂了,该Consumer Group中的其它Consumer可
以接着消费原Consumer消费的Queue)的目标变得非常容易。

在这里插入图片描述
消费者组中Consumer的数量应该小于等于订阅Topic的Queue数量。如果超出Queue数量,则多出的
Consumer将不能消费消息。

在这里插入图片描述
不过,一个Topic类型的消息可以被多个消费者组同时消费。
注意,
1)消费者组只能消费一个Topic的消息,不能同时消费多个Topic消息
2)一个消费者组中的消费者必须订阅完全相同的Topic
3 Name Server
功能介绍
NameServer是一个Broker与Topic路由的注册中心,支持Broker的动态注册与发现。
RocketMQ的思想来自于Kafka,而Kafka是依赖了Zookeeper的。所以,在RocketMQ的早期版本,即在
MetaQ v1.0与v2.0版本中,也是依赖于Zookeeper的。从MetaQ v3.0,即RocketMQ开始去掉了
Zookeeper依赖,使用了自己的NameServer。
主要包括两个功能:
Broker管理:接受Broker集群的注册信息并且保存下来作为路由信息的基本数据;提供心跳检测
机制,检查Broker是否还存活。
路由信息管理:每个NameServer中都保存着Broker集群的整个路由信息和用于客户端查询的队列
信息。Producer和Conumser通过NameServer可以获取整个Broker集群的路由信息,从而进行消
息的投递和消费。
路由注册
NameServer通常也是以集群的方式部署,不过,NameServer是无状态的,即NameServer集群中的各
个节点间是无差异的,各节点间相互不进行信息通讯。那各节点中的数据是如何进行数据同步的呢?在
Broker节点启动时,轮询NameServer列表,与每个NameServer节点建立长连接,发起注册请求。在
NameServer内部维护着⼀个Broker列表,用来动态存储Broker的信息。
注意,这是与其它像zk、Eureka、Nacos等注册中心不同的地方。
这种NameServer的无状态方式,有什么优缺点:
优点:NameServer集群搭建简单,扩容简单。
缺点:对于Broker,必须明确指出所有NameServer地址。否则未指出的将不会去注册。也正因
为如此,NameServer并不能随便扩容。因为,若Broker不重新配置,新增的NameServer对于
Broker来说是不可见的,其不会向这个NameServer进行注册。
Broker节点为了证明自己是活着的,为了维护与NameServer间的长连接,会将最新的信息以心跳包的
方式上报给NameServer,每30秒发送一次心跳。心跳包中包含 BrokerId、Broker地址(IP+Port)、
Broker名称、Broker所属集群名称等等。NameServer在接收到心跳包后,会更新心跳时间戳,记录这
个Broker的最新存活时间。
路由剔除
由于Broker关机、宕机或网络抖动等原因,NameServer没有收到Broker的心跳,NameServer可能会将
其从Broker列表中剔除。
NameServer中有⼀个定时任务,每隔10秒就会扫描⼀次Broker表,查看每一个Broker的最新心跳时间
戳距离当前时间是否超过120秒,如果超过,则会判定Broker失效,然后将其从Broker列表中剔除。
扩展:对于RocketMQ日常运维工作,例如Broker升级,需要停掉Broker的工作。OP需要怎么
做?
OP需要将Broker的读写权限禁掉。一旦client(Consumer或Producer)向broker发送请求,都会收
到broker的NO_PERMISSION响应,然后client会进行对其它Broker的重试。
当OP观察到这个Broker没有流量后,再关闭它,实现Broker从NameServer的移除。
OP:运维工程师
SRE:Site Reliability Engineer,现场可靠性工程师
路由发现
RocketMQ的路由发现采用的是Pull模型。当Topic路由信息出现变化时,NameServer不会主动推送给
客户端,而是客户端定时拉取主题最新的路由。默认客户端每30秒会拉取一次最新的路由。
扩展:
1)Push模型:推送模型。其实时性较好,是一个“发布-订阅”模型,需要维护一个长连接。而
长连接的维护是需要资源成本的。该模型适合于的场景:
实时性要求较高
Client数量不多,Server数据变化较频繁
2)Pull模型:拉取模型。存在的问题是,实时性较差。
3)Long Polling模型:长轮询模型。其是对Push与Pull模型的整合,充分利用了这两种模型的优
势,屏蔽了它们的劣势。
客户端NameServer选择策略
这里的客户端指的是Producer与Consumer
客户端在配置时必须要写上NameServer集群的地址,那么客户端到底连接的是哪个NameServer节点
呢?客户端首先会生产一个随机数,然后再与NameServer节点数量取模,此时得到的就是所要连接的
节点索引,然后就会进行连接。如果连接失败,则会采用round-robin策略,逐个尝试着去连接其它节
点。
首先采用的是随机策略进行的选择,失败后采用的是轮询策略。
扩展:Zookeeper Client是如何选择Zookeeper Server的?
简单来说就是,经过两次Shufæ e,然后选择第一台Zookeeper Server。
详细说就是,将配置文件中的zk server地址进行第一次shufæ e,然后随机选择一个。这个选择出
的一般都是一个hostname。然后获取到该hostname对应的所有ip,再对这些ip进行第二次
shufæ e,从shufæ e过的结果中取第一个server地址进行连接。
4 Broker
功能介绍
Broker充当着消息中转角色,负责存储消息、转发消息。Broker在RocketMQ系统中负责接收并存储从
生产者发送来的消息,同时为消费者的拉取请求作准备。Broker同时也存储着消息相关的元数据,包括
消费者组消费进度偏移offset、主题、队列等。
Kafka 0.8版本之后,offset是存放在Broker中的,之前版本是存放在Zookeeper中的。
模块构成
下图为Broker Server的功能模块示意图。
在这里插入图片描述
Remoting Module:整个Broker的实体,负责处理来自clients端的请求。而这个Broker实体则由以下模
块构成。
Client Manager:客户端管理器。负责接收、解析客户端(Producer/Consumer)请求,管理客户端。例
如,维护Consumer的Topic订阅信息
Store Service:存储服务。提供方便简单的API接口,处理消息存储到物理硬盘和消息查询功能。
HA Service:高可用服务,提供Master Broker 和 Slave Broker之间的数据同步功能。
Index Service:索引服务。根据特定的Message key,对投递到Broker的消息进行索引服务,同时也提
供根据Message Key对消息进行快速查询的功能。
集群部署

在这里插入图片描述
为了增强Broker性能与吞吐量,Broker一般都是以集群形式出现的。各集群节点中可能存放着相同
Topic的不同Queue。不过,这里有个问题,如果某Broker节点宕机,如何保证数据不丢失呢?其解决
方案是,将每个Broker集群节点进行横向扩展,即将Broker节点再建为一个HA集群,解决单点问题。
Broker节点集群是一个主从集群,即集群中具有Master与Slave两种角色。Master负责处理读写操作请
求,Slave负责对Master中的数据进行备份。当Master挂掉了,Slave则会自动切换为Master去工作。所
以这个Broker集群是主备集群。一个Master可以包含多个Slave,但一个Slave只能隶属于一个Master。
Master与Slave 的对应关系是通过指定相同的BrokerName、不同的BrokerId 来确定的。BrokerId为0表
示Master,非0表示Slave。每个Broker与NameServer集群中的所有节点建立长连接,定时注册Topic信
息到所有NameServer。
5 工作流程
具体流程
1)启动NameServer,NameServer启动后开始监听端口,等待Broker、Producer、Consumer连接。
2)启动Broker时,Broker会与所有的NameServer建立并保持长连接,然后每30秒向NameServer定时
发送心跳包。
3)发送消息前,可以先创建Topic,创建Topic时需要指定该Topic要存储在哪些Broker上,当然,在创
建Topic时也会将Topic与Broker的关系写入到NameServer中。不过,这步是可选的,也可以在发送消
息时自动创建Topic。
4)Producer发送消息,启动时先跟NameServer集群中的其中一台建立长连接,并从NameServer中获
取路由信息,即当前发送的Topic消息的Queue与Broker的地址(IP+Port)的映射关系。然后根据算法
策略从队选择一个Queue,与队列所在的Broker建立长连接从而向Broker发消息。当然,在获取到路由
信息后,Producer会首先将路由信息缓存到本地,再每30秒从NameServer更新一次路由信息。
5)Consumer跟Producer类似,跟其中一台NameServer建立长连接,获取其所订阅Topic的路由信息,
然后根据算法策略从路由信息中获取到其所要消费的Queue,然后直接跟Broker建立长连接,开始消费
其中的消息。Consumer在获取到路由信息后,同样也会每30秒从NameServer更新一次路由信息。不过
不同于Producer的是,Consumer还会向Broker发送心跳,以确保Broker的存活状态。
Topic的创建模式
手动创建Topic时,有两种模式:
集群模式:该模式下创建的Topic在该集群中,所有Broker中的Queue数量是相同的。
Broker模式:该模式下创建的Topic在该集群中,每个Broker中的Queue数量可以不同。
自动创建Topic时,默认采用的是Broker模式,会为每个Broker默认创建4个Queue。
读/写队列
从物理上来讲,读/写队列是同一个队列。所以,不存在读/写队列数据同步问题。读/写队列是逻辑上进
行区分的概念。一般情况下,读/写队列数量是相同的。
例如,创建Topic时设置的写队列数量为8,读队列数量为4,此时系统会创建8个Queue,分别是0 1 2 3
4 5 6 7。Producer会将消息写入到这8个队列,但Consumer只会消费0 1 2 3这4个队列中的消息,4 5 6
7中的消息是不会被消费到的。
再如,创建Topic时设置的写队列数量为4,读队列数量为8,此时系统会创建8个Queue,分别是0 1 2 3
4 5 6 7。Producer会将消息写入到0 1 2 3 这4个队列,但Consumer只会消费0 1 2 3 4 5 6 7这8个队列中
的消息,但是4 5 6 7中是没有消息的。此时假设Consumer Group中包含两个Consuer,Consumer1消
费0 1 2 3,而Consumer2消费4 5 6 7。但实际情况是,Consumer2是没有消息可消费的。
也就是说,当读/写队列数量设置不同时,总是有问题的。那么,为什么要这样设计呢?
其这样设计的目的是为了,方便Topic的Queue的缩容。
例如,原来创建的Topic中包含16个Queue,如何能够使其Queue缩容为8个,还不会丢失消息?可以动
态修改写队列数量为8,读队列数量不变。此时新的消息只能写入到前8个队列,而消费都消费的却是
16个队列中的数据。当发现后8个Queue中的消息消费完毕后,就可以再将读队列数量动态设置为8。整
个缩容过程,没有丢失任何消息。
perm用于设置对当前创建Topic的操作权限:2表示只写,4表示只读,6表示读写。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/136859.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI文本创作在百度App发文的实践

作者 | 内容生态端团队 导读 大语言模型(LLM)指包含数百亿(或更多)参数的语言模型,这些模型通常在大规模数据集上进行训练,以提高其性能和泛化能力。在内容创作工具接入文心一言AI能力后,可以为…

无涯教程-JavaScript - SIGN函数

描述 SIGN功能确定数字的符号。该函数返回- 如果数字为正,则为1 如果数字为0,则零(0) -1,如果数字为负 语法 SIGN (number)争论 Argument描述Required/OptionalNumberAny real number.Required Notes 如果指定的数字未被识别为数字值,则SIGN返回#VALUE!错误。 适用性 …

阿里云通义千问向全社会开放,近期将开源更大参数规模大模型

9月13日,阿里云宣布通义千问大模型已首批通过备案,并正式向公众开放,广大用户可登录通义千问官网体验,企业用户可以通过阿里云调用通义千问API。 通义千问在技术创新和行业应用上均位居大模型行业前列。IDC最新的AI大模型评估报告…

网络路径监控分析

不间断的连接应该是任何企业的首要任务。然而,确保网络中的源和目标之间持续、不间断的联系一直是网络通信中一个劳动密集型的过程。了解网络路径中的障碍、识别它们并迅速解决它们以维护健康、不间断的网络至关重要。 为什么要监控网络路径 维护网络运行状况是任…

【 Linux】Linux调试器 - gdb

​ ​📝个人主页:Sherry的成长之路 🏠学习社区:Sherry的成长之路(个人社区) 📖专栏链接:Linux 🎯长路漫漫浩浩,万事皆有期待 上一篇博客:【Linux】…

【Springboot】整合kafka

目录 安装zookeeperjdk安装zookeeper安装 安装kafka(非集群)springboot项目整合配置 安装zookeeper jdk安装 环境准备:CentOS7,jdk1.8 步骤如下: 下载自己需要的版本 这里使用的jdk1.8,获取链接如下 链接…

Spring Boot 自动注入失败的原因

问题 Caused by: org.springframework.beans.factory.NoSuchBeanDefinitionException: No qualifying bean of type com.sveinn.chatbotdomain.zsxq.service.ZsxqApi available: expected at least 1 bean which qualifies as autowire candidate. Dependency annotations: {ja…

HY57V561620FTP_SDRAM文档总结

文章目录 前言一、sdram简介1、名称解释2、发展历史3、与原先学习的RAM区别4、SDRAM分类 二、HY57V561620FTP1、描述1、内存划分2、特征3、引脚说明4、内部结构介绍5、交流特性6、可能涉及到的命令组合 2、SDRAM 具体操作流程1、整体状态图2、SDRAM指令及时序图3、芯片初始化(这…

MAML在隐式神经表示中的应用

论文 Learned Initializations for Optimizing Coordinate-Based Neural Representations 🎃Abstract1. Introduction2. Related Work3. Overview ⭐4. Results5. Conclusion6. AcknowledgementsA. Implementation details Implicit Neural Representations for Ima…

基于 IntelliJ 的 IDE 将提供 Wayland 支持

导读对于使用 IntelliJ 开发环境的用户,JetBrains 一直致力于提供原生 Wayland 支持。 JetBrains 正在致力于为基于 IntelliJ 的 IDE 提供 Wayland 支持,以增强 Linux 桌面体验以及在 Windows Subsystem for Linux 下运行。 Wayland 支持功能尚未完成&…

1262. 可被三整除的最大和

1262. 可被三整除的最大和 原题链接:完成情况:解题思路:方法一:贪心 正向思维方法二:贪心 逆向思维 参考代码:方法一:贪心 正向思维方法二:贪心 逆向思维 原题链接:…

实践分享:vue模块化基本用法

首先还是来看看什么是模块化。 常见的概括:模块化就是把单独的一个功能封装到一个模块(文件)中,模块之间相互隔离,但是可以通过特定的接口公开内部成员,也可以依赖别的模块(方便代码的重用&…

嵌入式网络接口之MAC芯片与PHY芯片

目录 0. 参考文档 1.嵌入式网络接口简介 2.嵌入式网络硬件架构方案 2.1 SOC内未集成MAC芯片 2.2 SOC内集成MAC芯片 2.3 主流方案总结 2.3 参照实际网卡的说明 3.MII/RMII及MDIO接口 3.1 MII 3.2 RMII 3.3 MDIO 0. 参考文档 网卡构造:MAC与PHY的关系&…

从源码角度解读xxl-job的工作流程

剖析xxl-job的源码——了解其实现细节与优化策略 设计思想🧠服务端-源码探究 🔍1. 初始化触发器线程池2. 维护注册信息3. 运行失败监视器4. 将丢失主机信息调度日志更改状态5. 统计一些失败成功报表,删除过期日志6. 执行调度器[核心] 客户端-源码探究&am…

保研复习-计算机组成原理

计算机组成原理 计算机组成冯诺依曼体系结构计算机系统的层次结构计算机的五大组成部件编译和解释的区别 CPUCPU的组成寄存器的类型指令类型指令功能指令执行过程 存储器存储器的层次结构寻址方式 输入和输出io方式有哪几种IO接口的基本结构 计算机组成 冯诺依曼体系结构 存储…

从CNN(卷积神经网络),又名CAM获取热图

一、说明 卷积神经网络(CNN)令人难以置信。如果你想知道它如何看待世界(图像),有一种方法是可视化它。 这个想法是,我们从最后的密集层中得到权重,然后乘以最终的CNN层。这需要全局平均…

每日一题~二叉搜索树中的插入操作

题目链接:701. 二叉搜索树中的插入操作 - 力扣(LeetCode) 题目描述: 思路分析:由题可知,题目的要求是给我们一个二叉搜索树和一个 val,将这个 val 插入到二叉搜索树中,并且这个树仍…

八、实时时钟

八、实时时钟 简介时钟芯片模块代码可调时钟 简介 引脚定义和应用电路 我们的开发板没有备用电池 寄存器定义 时序定义 在时钟的上升沿,IO口的数据被写入到芯片中,在下降沿,芯片就会将数据输出。如果是写入,那么在整个过程中&…

数据优化与可视化:3D开发工具HOOPS在BIM模型轻量化中的作用分析

在建筑和工程领域,BIM(建筑信息建模)是一种重要的数字化工具,但大型BIM模型往往需要大量的计算资源和存储空间。为了解决这一问题,HOOPS技术成为了一种关键工具,可以帮助实现BIM模型轻量化,提高…

面试题三:请你谈一谈Vue中的filter功能的实现

Vue中过滤器(filter)的使用 我们想一下有methods为什么要有filter的存在呢,因为filter的实现效率比methods要高的多。 看一下官方定义: Vue.js 允许你自定义过滤器,可被用于一些常见的文本格式化。过滤器可以用在两个地方:双花括号…