11:STM32---spl通信

目录

一:SPL通信

1:简历

2:硬件电路

3:移动数据图

4:SPI时序基本单元

A : 开/ 终条件

B:SPI时序基本单元

A:模式0

B:模式1

C:模式2

D:模式3

C:SPl时序

A:发送指令

B: 指定地址写

C:指定地址读

二: W25Q64

1:简历

2: 硬件电路

3:W25Q64框图

4: Flash操作注意事项

5:指令集

三:案例

A: 软件SPI读写W25Q64

1: 连接图

2:代码

B: 硬件SPI读写W25Q64

1:简历

2:框图

3:SPI基本结构

4: 主模式全双工连续传输

5: 非连续传输

6:连接图

7: 代码 


一:SPL通信

1:简历


          SPI(Serial Peripheral Interface)是由Motorola公司开发的一种通用数据总线

        四根通信线:SCK(Serial Clock)、MOSI(Master Output Slave Input)、MISO(Master Input Slave Output)、SS(Slave Select)

         同步(有时钟线),全双工 (传输线有2条,发送和接受线路)

        支持总线挂载多设备(一主多从)

        SPl没有应答机制

2:硬件电路

        所有SPI设备的SCK、MOSI、MISO分别连在一起

        主机另外引出多条SS控制线,分别接到各从机的SS引脚

        输出引脚配置为推挽输出,输入引脚配置为浮空或上拉输入

        SS也叫CS片选信号 : 和全部的从机连接, 用于选择主机和那个从机进行通信, 低电平有效;   每个从机的SS(CS)都和主机的SSX相互连接,  SS对于主机来说的话,就是输出信号, 从机的话就是输入信号

        IO的配置 : 都是以STM32为主角进行的.  主机输出信号配置---推挽输出,  主机输入信号配置----浮空或上拉输入

        SCK : 时钟线,  时钟线完全由主机掌控,  所以对于主机来说,时钟线为输出;   对于所有从机来说,时钟线都为输入;  这样主机的同步时钟,就能送到各个从机了

        MOSI : 主机输出,从机输入

        MISO : 主机输入,从机输出

       关于CS和MISO主机输入,从机输出 : 当从机没有被选中的时候,也就是SS段电平为1; 从机的MISO主机输入,从机输出必须切换为高阻态 , 高阻态就相当于引脚断开,不输出任何电平;   这样就可以防止,一条线有多个输出,而导致的电平冲突的问题了;    在SS为低电平时,MISO才允许变为推挽输出----从机的操作-------一般情况下我们只需要写主机的程序,从机的程序不需要我们操心

3:移动数据图

交换数据, 高位先行

SPI的数据收发,都是基于字节交换,这个基本单元来进行的 (移位模型)

        首先,我们规定波特率发生器时钟的上升沿主机和从机都移出数据;  下将沿移入数据;

  

        数据为从左往右运动,所以是高为先行,  首先波特率发生器时钟产生上生沿, 主机把它的最高位的数据放在MOSI上面, 从机把它最高位置的数据放在MISO上面;          在由特率发生器产生的下降沿移入数据;  在MISO数据线上从机的最高位的数据放在主机的最低位置上面;  MOSI上面主机最高位的数据放在从机的最低位置

4:SPI时序基本单元

A : 开/ 终条件

        起始条件:SS从高电平切换到低电平

        终止条件:SS从低电平切换到高电平

B:SPI时序基本单元

在任何操作下, 我们只管主机(只写主机的代码) , 从机它自动操作(不用写从机的代码) 

我们经常使用的是模式0

A:模式0

        交换一个字节(模式0)

        CPOL=0:空闲状态时,SCK为低电平

        CPHA=0:SCK第一个边沿移入数据,第二个边沿移出数据

        SCL上升沿主机和从机同步移入数据;  SCL下降沿主机和从机同步移出数据


/**
* @brief  SPL交换数据--使用的为模式0DI(MOSI)----SPI主机输出从机输入DO(MISO)-------SPI主机输入从机输出我们只操作主机:首先主机移出最高位,放在MOSI上面,---主机操作需要我们来齐次从机把数据放在MISO上面----从机的操作不需要我们管* @param  ByteSend: 主机给从机发送的数据* @retval 主机读取的数据----即从机给主机发送的数据*/
uint8_t MySPI_SwapByte(uint8_t ByteSend)
{		MySPI_W_SCK(0);//一般来说&是用来清零的;
//一般来说|是用来值一的;uint8_t ByteReceive=0x00;for (uint8_t i=0;i<8;i++){MySPI_W_MOSI(ByteSend & (0x80>>i)); //MOSI主机输出数据 1000 0000 /*我们只操作主机: SCL上升沿主机和从机同步移入数据, 从机会自动把主机给它的最高为移动到了从机里面---从机不需要我们操作主机操作 : 主机需要把从机给它发送的数据移动到了主机里面---即读取MISO线上的数据*/MySPI_W_SCK(1);if (MySPI_R_MISO() == 1){ByteReceive |= (0x80 >> i);}//MySPI_R_MISO主机读取数据MySPI_W_SCK(0);//SCL下降沿主机和从机同步移出数据//|---置1}return ByteReceive;
}

在任何操作下, 我们只管主机(只写主机的代码) , 从机它自动操作(不用写从机的代码) 

B:模式1

        交换一个字节(模式1)

        CPOL=0:空闲状态时,SCK为低电平

        CPHA=1:SCK第一个边沿移出数据,第二个边沿移入数据

        SPl为了可以配置更多的时钟芯片, 给我们了2个可以自己调节的位, 分别为:CPOL (Clock Polarity)时钟极性和CPHA (Clock Phase)时钟相位配置这两个为,  就构成了4种模式

        模式1 : 波特率发生器时钟的上升沿主机和从机都移出数据;  下将沿移入数据;  模式1的数据移动方式和 3:移动数据图 一样 , 详情参考----3:移动数据图

C:模式2

        交换一个字节(模式2)

        CPOL=1:空闲状态时,SCK为高电平

        CPHA=0:SCK第一个边沿移入数据,第二个边沿移出数据

D:模式3

        交换一个字节(模式3)

        CPOL=1:空闲状态时,SCK为高电平

        CPHA=1:SCK第一个边沿移出数据,第二个边沿移入数据

C:SPl时序

A:发送指令

规定 : SPL起始的第一个字节为指令集

发送指令

向SS指定的设备,发送指令(0x06)--0x06使能

B: 指定地址写

        指定地址写

        向SS指定的设备,发送写指令(0x02),---0x02写入的指令集    

        随后在指定地址(Address[23:0])下,写入指定数据(Data)   

        SPl没有应答机制, 交换一个字节后, 直接开始交换下一个字节

C:指定地址读

        指定地址读

        向SS指定的设备,发送读指令(0x03),---0x03发送指令的指令集   

        随后在指定地址(Address[23:0])下,读取从机数据(Data)

二: W25Q64

1:简历

        W25Qxx系列是一种低成本、小型化、使用简单的非易失性存储器,常应用于数据存储、字库存储、固件程序存储等场景

        存储介质:Nor Flash(闪存)

        时钟频率:80MHz / 160MHz (Dual SPI) / 320MHz (Quad SPI)

        存储容量(24位地址):

        W25Q40:      4Mbit / 512KByte     

        W25Q80:      8Mbit / 1MByte   

         W25Q16:      16Mbit / 2MByte     

        W25Q32:      32Mbit / 4MByte   

         W25Q64:      64Mbit / 8MByte   

         W25Q128:  128Mbit / 16MByte   

         W25Q256:  256Mbit / 32MByte

2: 硬件电路

3:W25Q64框图

4: Flash操作注意事项

非易失性存储器---掉电不丢失

写入操作时

        写入操作前,必须先进行写使能------------是一种保护措施,防止你误操作的

        每个数据位只能由1改写为0,不能由0改写为1--------------Flash并没有像RAM那样的,  直接完全覆盖改写的能力. eg:在某一个直接的储存单元首先储存了0xaa 1010 1010 在储存0x55 0101 0101 因为Flash没有直接覆盖数据的能力,  在加上第二条规定的限制实际储存的数据为: 0000 0000 不是0x55, 使用在写入第二给数据前必须擦除之前的数据

        写入数据前必须先擦除,擦除后,所有数据位变为1--------------有专门的擦除电路把之前写的数据都值1(0xFF), 就可以弥补第二条规定的不足

        擦除必须按最小擦除单元进行------------不能指定某一个字节去擦除, 要擦,就得一大片一起擦, 在我们这个芯片里;  你可以选择,整个芯片擦除, 也可以选择,按块擦除,或者按扇区擦除;    最小的擦除单元,就是一个扇区, 个扇区,是4KB,就是4096个字节

        连续写入多字节时,最多写入一页的数据,超过页尾位置的数据,会回到页首覆盖写入--------一个写入时序,最多只能写一页的数据,也就是256字节;  一个页缓存区,它只有256字节;    Flash的写入,太慢了.  跟不上SPI的频率.  所以写入的数据,会先放在RAM里暂存.             必须得,从页起始位置开始,才能最大写入256字节,  如果从页中间的地址开始写, 那写到页尾时,这个地址就会跳回到页首, 这会导致地址错乱

        写入操作结束后,芯片进入忙状态,不响应新的读写操作--------要想知道芯片什么时候结束忙状态了,  我们可以使用读取状态寄存器的指令,  看一下状态寄存器的BUSY位是否为1,  BUSY位为0时,芯片就不忙了,我们再进行操作

        在发出擦除指令后,芯片也会进入忙状态, 我们也得等待忙状态结束后,才能进行后续操作

        扇区擦除也是写入所以需要使能

读取操作时

        直接调用读取时序,无需使能,无需额外操作,没有页的限制,

        读取操作结束后不会进入忙状态,但不能在忙状态时读取,

5:指令集

INSTRUCTION NAME---指令的名字;     BYTE----字节X

 

Write Enable----写使能指令集

Write Disable --------写失能指令集

Read Status Register-1---------读状态寄存器1--作用: 判断寄存器在不在忙, 具体见 二: 4

Page Program----------页编程, 写数据,max为256个字节

Sector Erase (4KB)-------------按4KB的扇区擦除

JEDEC ID----------读取ID

Read Data-----读取数据

三:案例

A: 软件SPI读写W25Q64

1: 连接图

        因为我们使用的是软件模拟SPL通信,    所以原则上外设的引脚可以随便和32端口连接, 使用端口模拟SPL通信

2:代码

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "mySPl.h"
#include "w25q64.h "//一般来说&是用来清零的;
//一般来说|是用来值一的;
void MySPI_W_SS(uint8_t BitValue)
{//也叫做CS片选段----在低电平是有效GPIO_WriteBit(GPIOA,GPIO_Pin_4,(BitAction)BitValue);}
void MySPI_W_SCK(uint8_t BitValue)
{//CLK(SCK)	SPI时钟GPIO_WriteBit(GPIOA,GPIO_Pin_5,(BitAction)BitValue);}
void MySPI_W_MOSI(uint8_t BitValue)
{//MOSI-----主机输出GPIO_WriteBit(GPIOA,GPIO_Pin_7,(BitAction)BitValue);
}uint8_t MySPI_R_MISO(void)
{//MISO-----主机输入return GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_6);
}/**
* @brief  DO(MISO)	SPI主机输入从机输出---连接的是PA6;   都是以主机的角度看输出引脚配置为推挽输出,输入引脚配置为浮空或上拉输入PA6----浮空或上拉输入;  剩下的全部为推挽输出* @retval 无*/
void MYSPL_init()
{RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;//推挽输出GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5|GPIO_Pin_7;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;  //上拉输入GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);//在开始时候默认SS(CS)为高电平,SCK为低电平MySPI_W_SS(1);MySPI_W_SCK(0);}void SPL_Start()
{MySPI_W_SS(1);MySPI_W_SS(0);
}
void SPL_Stop()
{MySPI_W_SS(0);MySPI_W_SS(1);
}/**
* @brief  SPL交换数据--使用的为模式0DI(MOSI)----SPI主机输出从机输入DO(MISO)-------SPI主机输入从机输出我们只操作主机:首先主机移出最高位,放在MOSI上面,---主机操作需要我们来齐次从机把数据放在MISO上面----从机的操作不需要我们管* @param  ByteSend: 主机给从机发送的数据* @retval 主机读取的数据----即从机给主机发送的数据*/
uint8_t MySPI_SwapByte(uint8_t ByteSend)
{		MySPI_W_SCK(0);//一般来说&是用来清零的;
//一般来说|是用来值一的;uint8_t ByteReceive=0x00;for (uint8_t i=0;i<8;i++){MySPI_W_MOSI(ByteSend & (0x80>>i)); //MOSI主机输出数据 1000 0000 /*我们只操作主机: SCL上升沿主机和从机同步移入数据, 从机会自动把主机给它的最高为移动到了从机里面---从机不需要我们操作主机操作 : 主机需要把从机给它发送的数据移动到了主机里面---即读取MISO线上的数据*/MySPI_W_SCK(1);if (MySPI_R_MISO() == 1){ByteReceive |= (0x80 >> i);}//MySPI_R_MISO主机读取数据MySPI_W_SCK(0);//SCL下降沿主机和从机同步移出数据//|---置1}return ByteReceive;
}//W25Q64_WaitBusy等待不忙的函数, 事后等待,只需要在写入操作之后调用---因为在写入后等待不忙读取的时候肯定不忙
//而事前等待,在写入操作和读取操作之前,都得调用
//我们采用事前等待
void W25Q64_init()
{MYSPL_init();}
/*** @brief  读取设备的ID号
步骤: 起始,先交换发送指令9F,随后连续交换接收3个字节,停止;
连续接收的3个字节: 第一个字节是广商ID”表示了是哪个广家生产.
后两个学节---是设备ID;    设备ID的高8为---表示存储器类型, 低8为--表示容量
* @param  MID : 输出8位的厂商ID@param  DID : 输出16位的设备ID因为函数内的返回值只能返一个,而用指针,只要知道地址就可以写入;
可以直接改变外补的2个参数, 相当于返回2个参数* @retval 无*/
void W25Q64_ReadID(uint8_t *MID, uint16_t *DID)
{	一般来说&是用来清零的;//一般来说|是用来值一的;SPL_Start();MySPI_SwapByte(0x9F);//先交换发送指令9F*MID = MySPI_SwapByte(0xFF);//返回的第一个字节是广商ID; 这时候我们给我从机发送的数据没有实际的意义*DID = MySPI_SwapByte(0xFF);//返回的第二个字节设备ID的高8为---表示存储器类型*DID <<= 8;*DID |= MySPI_SwapByte(0xFF);返回的第二个字节设备低8为--表示容量SPL_Stop();
}/*** @brief  写使能函数*/
void W25Q64_WriteEnable(void)
{SPL_Start();MySPI_SwapByte(W25Q64_WRITE_ENABLE);//规定 : SPL起始的第一个字节为指令集SPL_Stop();
}/**
* @brief  等待忙函数--状态寄存器1 :作用看寄存器忙不忙要想知道芯片什么时候结束忙状态了, 我们可以使用读取状态寄存器的指令,  看一下状态寄存器的BUSY位是否为1,  BUSY位为0时,芯片就不忙了,我们再进行操作*/
void W25Q64_WaitBusy(void)
{		uint32_t Count;SPL_Start();MySPI_SwapByte(W25Q64_READ_STATUS_REGISTER_1);//规定 : SPL起始的第一个字节为指令集Count=5000;while ((MySPI_SwapByte(W25Q64_DUMMY_BYTE) & 0x01) ==0x01){Count--;if (Count==0){break;}}SPL_Stop();
}
/*** @brief  写页编程-----主机给从机发送数据步骤 : 1---先发送指令;  2--然后连发3个字节,就是24位地址  3---之后继续发送DataByte1(数据1)、DataByte2、DataByte3, 最大是DataByte256* @param  Address 步骤中的1和2步---也就是发送的地址
* @param  *DataArray 主机给从机发送的数据, 这里面为一个数组* @param  Count 数组的长度* @retval 无*/
void W25Q64_PageProgram(uint32_t Address, uint8_t *DataArray, uint16_t Count)
{	W25Q64_WaitBusy();//写入操作结束后,芯片进入忙状态,不响应新的读写操作W25Q64_WriteEnable();//写入操作前,必须先进行写使能SPL_Start();MySPI_SwapByte(W25Q64_PAGE_PROGRAM);//规定 : SPL起始的第一个字节为指令集MySPI_SwapByte(Address>>16); //一共为24位,把数据后移16为,先把前8为也就是第一个直接发送给从机MySPI_SwapByte(Address>>8);//发送给从机的第二给字节MySPI_SwapByte(Address);//发送给从机的第三给字节//下面为主机给从机发送的真正的数据for (uint8_t i=0; i<Count; i++){MySPI_SwapByte(DataArray[i]);}SPL_Stop();}/*** @brief  按4KB的扇区擦除* @param  Address 擦除的地址步骤: 需要先发送指令0x20,再发送3个字节的地址,就行了* @retval 无*/
void W25Q64_SectorErase(uint32_t Address)
{				W25Q64_WaitBusy();//在发出擦除指令后,芯片也会进入忙状态, 我们也得等待忙状态结束后,才能进行后续操作W25Q64_WriteEnable(); //扇区擦除也是写入所以需要使能SPL_Start();MySPI_SwapByte(W25Q64_SECTOR_ERASE_4KB);MySPI_SwapByte(Address>>16); //一共为24位,把数据后移16为,先把前8为也就是第一个直接发送给从机MySPI_SwapByte(Address>>8);//发送给从机的第二给字节MySPI_SwapByte(Address);//发送给从机的第三给字节SPL_Stop();}/*** @brief  主机接受从机给主机发送的数据
步骤:流程是,交换发送指令03,再发送3个字节地址;  随后转入接收,就可以依次接收数据了* @param  Address 起始行位置,范围:1~4* @param  DataArray 起始列位置,范围:1~16* @param  Count 要显示的数字,范围:0~1111 1111 1111 1111* @retval 无*/
void W25Q64_ReadData(uint32_t Address, uint8_t *DataArray, uint32_t Count)
{	W25Q64_WaitBusy();//读取操作结束后不会进入忙状态,但不能在忙状态时读取SPL_Start();MySPI_SwapByte(W25Q64_READ_DATA);//规定 : SPL起始的第一个字节为指令集MySPI_SwapByte(Address>>16); //一共为24位,把数据后移16为,先把前8为也就是第一个直接发送给从机MySPI_SwapByte(Address>>8);//发送给从机的第二给字节MySPI_SwapByte(Address);//发送给从机的第三给字节//下面为主机正在接受的数据, 从机给主机发送数据for (uint8_t i=0; i<Count; i++){DataArray[i] = MySPI_SwapByte(W25Q64_DUMMY_BYTE); //1111 1111 没有实际的意义}SPL_Stop();
}#define W25Q64_WRITE_ENABLE							0x06
#define W25Q64_WRITE_DISABLE						0x04
#define W25Q64_READ_STATUS_REGISTER_1				0x05
#define W25Q64_READ_STATUS_REGISTER_2				0x35
#define W25Q64_WRITE_STATUS_REGISTER				0x01
#define W25Q64_PAGE_PROGRAM							0x02
#define W25Q64_QUAD_PAGE_PROGRAM					0x32
#define W25Q64_BLOCK_ERASE_64KB						0xD8
#define W25Q64_BLOCK_ERASE_32KB						0x52
#define W25Q64_SECTOR_ERASE_4KB						0x20
#define W25Q64_CHIP_ERASE							0xC7
#define W25Q64_ERASE_SUSPEND						0x75
#define W25Q64_ERASE_RESUME							0x7A
#define W25Q64_POWER_DOWN							0xB9
#define W25Q64_HIGH_PERFORMANCE_MODE				0xA3
#define W25Q64_CONTINUOUS_READ_MODE_RESET			0xFF
#define W25Q64_RELEASE_POWER_DOWN_HPM_DEVICE_ID		0xAB
#define W25Q64_MANUFACTURER_DEVICE_ID				0x90
#define W25Q64_READ_UNIQUE_ID						0x4B
#define W25Q64_JEDEC_ID								0x9F
#define W25Q64_READ_DATA							0x03
#define W25Q64_FAST_READ							0x0B
#define W25Q64_FAST_READ_DUAL_OUTPUT				0x3B
#define W25Q64_FAST_READ_DUAL_IO					0xBB
#define W25Q64_FAST_READ_QUAD_OUTPUT				0x6B
#define W25Q64_FAST_READ_QUAD_IO					0xEB
#define W25Q64_OCTAL_WORD_READ_QUAD_IO				0xE3#define W25Q64_DUMMY_BYTE							0xFF  //这个数据实际没有意义#endifuint8_t MID;
uint16_t DID;uint8_t ArrayWrite[] = {0x55, 0x66, 0x77, 0x88};
uint8_t ArrayRead[4];int main(void)
{OLED_Init();W25Q64_init();OLED_ShowString(1, 1, "MID:   DID:");OLED_ShowString(2, 1, "W:");OLED_ShowString(3, 1, "R:");W25Q64_ReadID(&MID, &DID);OLED_ShowHexNum(1, 5, MID, 2);OLED_ShowHexNum(1, 12, DID, 4);W25Q64_SectorErase(0x000000);//擦除W25Q64_PageProgram(0x000000, ArrayWrite, 4);//写页编程W25Q64_ReadData(0x000000, ArrayRead, 4);//读取OLED_ShowHexNum(2, 3, ArrayWrite[0], 2);OLED_ShowHexNum(2, 6, ArrayWrite[1], 2);OLED_ShowHexNum(2, 9, ArrayWrite[2], 2);OLED_ShowHexNum(2, 12, ArrayWrite[3], 2);OLED_ShowHexNum(3, 3, ArrayRead[0], 2);OLED_ShowHexNum(3, 6, ArrayRead[1], 2);OLED_ShowHexNum(3, 9, ArrayRead[2], 2);OLED_ShowHexNum(3, 12, ArrayRead[3], 2);while (1){}
}

B: 硬件SPI读写W25Q64

1:简历

        STM32内部集成了硬件SPI收发电路,可以由硬件自动执行时钟生成、数据收发等功能,减轻CPU的负担

        可配置8位/16位数据帧、高位先行/低位先行

        时钟频率: fPCLK / (2, 4, 8, 16, 32, 64, 128, 256)------PCLK在32中为72MHz表示参数的速度

        支持多主机模型、主或从操作

        可精简为半双工/单工通信

        支持DMA

        兼容I2S协议

        STM32F103C8T6 硬件SPI资源:SPI1、SPI2

2:框图

        图中表示的为低位先行,   但是可以通过调节 LSBFIRST来配置低位还是高位先行,  一般我们使用的是高位先行的方式.

        (接受和发送)缓冲区-----实际上就是数据寄存器DR;   下面发送缓冲区,就是发送数据寄存器TDR;   上面接收缓冲区,就是接收数据寄存器RDR;   和串口那里一样,TDR和RDR占用同一个地址,统.叫作DR.

        TEX:  数据奇存器和移位寄存器打配合,可以实现连续的数据流, 具体的流程如下:   第一个数据,写入到TDR,  当移位寄存器没有数据移位时,  TDR的数据会立刻转入移位奇存器,开始移位;   这个转入时刻,会置状态寄存器的TXE为1,  表示发送寄存器空      当我们检查TXE置1后紧跟着,下一个数据,就可以提前写入到TDR里候着了数据发完,下一个数据就可以立刻跟进

        RXNE :  然后移位寄存器这里,一旦有数据过来了,  它就会自动产生时钟,将数据移出去,  在移出的过程中,MISO  (主机输入,从机输出)  的数据也会移入,  一旦数据移出完成,数据移入是不是也完成了,  这时,移入的数据,就会整体地从移位寄存器转入到接收缓冲区RDR ,   这个时刻,会置状态奇存器的RXNE为1  ,   表示接收寄存器非空.   当我们检查RXNE置1后,就要尽快把数据从RDR读出来.   在下一个数据到来之前,读出RDR,就可以实现连续接收

        

3:SPI基本结构

4: 主模式全双工连续传输

这个使用的是SPI时序基本单元的模式3

5: 非连续传输

6:连接图

        硬件SPl的连线要根据引脚定义表来连接, 软件的话不用.  和I2C硬件的连接方式相同,都是根据引脚定义表来连接的.

7: 代码 


#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "mySPl.h"
#include "w25q64.h "//一般来说&是用来清零的;
//一般来说|是用来值一的;
void MySPI_W_SS(uint8_t BitValue)
{//也叫做CS片选段----在低电平是有效GPIO_WriteBit(GPIOA,GPIO_Pin_4,(BitAction)BitValue);}/**
* @brief  DO(MISO)	SPI主机输入从机输出---连接的是PA6;   都是以主机的角度看输出引脚配置为推挽输出,输入引脚配置为浮空或上拉输入PA6----浮空或上拉输入;  剩下的全部为推挽输出* @retval 无*/
void MYSPL_init()
{RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;//推挽输出GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;//复用推挽输出GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7| GPIO_Pin_5;//复用--控制的权力交给片上外设GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;  //上拉输入GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);//在开始时候默认SS(CS)为高电平,SCK为低电平SPI_InitTypeDef SPl_initstruct;SPl_initstruct.SPI_BaudRatePrescaler=SPI_BaudRatePrescaler_128;//波特率预分频器的值SPl_initstruct.SPI_CPHA=SPI_CPHA_1Edge;   //配置SPl的模式SPl_initstruct.SPI_CPOL=SPI_CPOL_Low;		//配置SPl的模式SPl_initstruct.SPI_CRCPolynomial=7;   //填入默认的7即可SPl_initstruct.SPI_DataSize=SPI_DataSize_8b;  //8个字节的大小SPl_initstruct.SPI_Direction=SPI_Direction_2Lines_FullDuplex;  //双线全双工SPl_initstruct.SPI_FirstBit=SPI_FirstBit_MSB;  //选择高位先行还是低位先行; --高位先行SPl_initstruct.SPI_Mode=SPI_Mode_Master;   //指定当前设备为主机还是从机; ---主机SPl_initstruct.SPI_NSS=SPI_NSS_Soft; //NSS使用软件模拟--软件模拟CSSPI_Init(SPI1,&SPl_initstruct);SPI_Cmd(SPI1,ENABLE);MySPI_W_SS(1);}void SPL_Start()
{MySPI_W_SS(1);MySPI_W_SS(0);
}
void SPL_Stop()
{MySPI_W_SS(0);MySPI_W_SS(1);
}/**
* @brief  SPL交换数据--使用的为模式0DI(MOSI)----SPI主机输出从机输入DO(MISO)-------SPI主机输入从机输出我们只操作主机:首先主机移出最高位,放在MOSI上面,---主机操作需要我们来齐次从机把数据放在MISO上面----从机的操作不需要我们管* @param  ByteSend: 主机给从机发送的数据* @retval 主机读取的数据----即从机给主机发送的数据*/
uint8_t MySPI_SwapByte(uint8_t ByteSend)
{		//此标志为”1'时表明发送缓冲器为空,可以写下一个待发送的数据进入缓冲器中。//当写入SPI DR时,TXE标志被清除。while (SPI_I2S_GetFlagStatus(SPI1,SPI_I2S_FLAG_TXE)==RESET);//检查标志位SPI_I2S_SendData(SPI1,ByteSend);//此标志为'1时表明在接收缓冲器中包含有效的接收数据。读SPI数据寄存器可以清除此标志。while (SPI_I2S_GetFlagStatus(SPI1,SPI_I2S_FLAG_RXNE)==RESET);//检查标志位return SPI_I2S_ReceiveData(SPI1);
}//W25Q64_WaitBusy等待不忙的函数, 事后等待,只需要在写入操作之后调用---因为在写入后等待不忙读取的时候肯定不忙
//而事前等待,在写入操作和读取操作之前,都得调用
//我们采用事前等待
void W25Q64_init()
{MYSPL_init();}
/*** @brief  读取设备的ID号
步骤: 起始,先交换发送指令9F,随后连续交换接收3个字节,停止;
连续接收的3个字节: 第一个字节是广商ID”表示了是哪个广家生产.
后两个学节---是设备ID;    设备ID的高8为---表示存储器类型, 低8为--表示容量
* @param  MID : 输出8位的厂商ID@param  DID : 输出16位的设备ID因为函数内的返回值只能返一个,而用指针,只要知道地址就可以写入;
可以直接改变外补的2个参数, 相当于返回2个参数* @retval 无*/
void W25Q64_ReadID(uint8_t *MID, uint16_t *DID)
{	一般来说&是用来清零的;//一般来说|是用来值一的;SPL_Start();MySPI_SwapByte(0x9F);//先交换发送指令9F*MID = MySPI_SwapByte(0xFF);//返回的第一个字节是广商ID; 这时候我们给我从机发送的数据没有实际的意义*DID = MySPI_SwapByte(0xFF);//返回的第二个字节设备ID的高8为---表示存储器类型*DID <<= 8;*DID |= MySPI_SwapByte(0xFF);返回的第二个字节设备低8为--表示容量SPL_Stop();
}/*** @brief  写使能函数*/
void W25Q64_WriteEnable(void)
{SPL_Start();MySPI_SwapByte(W25Q64_WRITE_ENABLE);//规定 : SPL起始的第一个字节为指令集SPL_Stop();
}/**
* @brief  等待忙函数--状态寄存器1 :作用看寄存器忙不忙要想知道芯片什么时候结束忙状态了, 我们可以使用读取状态寄存器的指令,  看一下状态寄存器的BUSY位是否为1,  BUSY位为0时,芯片就不忙了,我们再进行操作*/
void W25Q64_WaitBusy(void)
{		uint32_t Count;SPL_Start();MySPI_SwapByte(W25Q64_READ_STATUS_REGISTER_1);//规定 : SPL起始的第一个字节为指令集Count=5000;while ((MySPI_SwapByte(W25Q64_DUMMY_BYTE) & 0x01) ==0x01){Count--;if (Count==0){break;}}SPL_Stop();
}
/*** @brief  写页编程-----主机给从机发送数据步骤 : 1---先发送指令;  2--然后连发3个字节,就是24位地址  3---之后继续发送DataByte1(数据1)、DataByte2、DataByte3, 最大是DataByte256* @param  Address 步骤中的1和2步---也就是发送的地址
* @param  *DataArray 主机给从机发送的数据, 这里面为一个数组* @param  Count 数组的长度* @retval 无*/
void W25Q64_PageProgram(uint32_t Address, uint8_t *DataArray, uint16_t Count)
{	W25Q64_WaitBusy();//写入操作结束后,芯片进入忙状态,不响应新的读写操作W25Q64_WriteEnable();//写入操作前,必须先进行写使能SPL_Start();MySPI_SwapByte(W25Q64_PAGE_PROGRAM);//规定 : SPL起始的第一个字节为指令集MySPI_SwapByte(Address>>16); //一共为24位,把数据后移16为,先把前8为也就是第一个直接发送给从机MySPI_SwapByte(Address>>8);//发送给从机的第二给字节MySPI_SwapByte(Address);//发送给从机的第三给字节//下面为主机给从机发送的真正的数据for (uint8_t i=0; i<Count; i++){MySPI_SwapByte(DataArray[i]);}SPL_Stop();}/*** @brief  按4KB的扇区擦除* @param  Address 擦除的地址步骤: 需要先发送指令0x20,再发送3个字节的地址,就行了* @retval 无*/
void W25Q64_SectorErase(uint32_t Address)
{				W25Q64_WaitBusy();//在发出擦除指令后,芯片也会进入忙状态, 我们也得等待忙状态结束后,才能进行后续操作W25Q64_WriteEnable(); //扇区擦除也是写入所以需要使能SPL_Start();MySPI_SwapByte(W25Q64_SECTOR_ERASE_4KB);MySPI_SwapByte(Address>>16); //一共为24位,把数据后移16为,先把前8为也就是第一个直接发送给从机MySPI_SwapByte(Address>>8);//发送给从机的第二给字节MySPI_SwapByte(Address);//发送给从机的第三给字节SPL_Stop();}/*** @brief  主机接受从机给主机发送的数据
步骤:流程是,交换发送指令03,再发送3个字节地址;  随后转入接收,就可以依次接收数据了* @param  Address 起始行位置,范围:1~4* @param  DataArray 起始列位置,范围:1~16* @param  Count 要显示的数字,范围:0~1111 1111 1111 1111* @retval 无*/
void W25Q64_ReadData(uint32_t Address, uint8_t *DataArray, uint32_t Count)
{	W25Q64_WaitBusy();//读取操作结束后不会进入忙状态,但不能在忙状态时读取SPL_Start();MySPI_SwapByte(W25Q64_READ_DATA);//规定 : SPL起始的第一个字节为指令集MySPI_SwapByte(Address>>16); //一共为24位,把数据后移16为,先把前8为也就是第一个直接发送给从机MySPI_SwapByte(Address>>8);//发送给从机的第二给字节MySPI_SwapByte(Address);//发送给从机的第三给字节//下面为主机正在接受的数据, 从机给主机发送数据for (uint8_t i=0; i<Count; i++){DataArray[i] = MySPI_SwapByte(W25Q64_DUMMY_BYTE); //1111 1111 没有实际的意义}SPL_Stop();
}#ifndef __W25Q64_INS_H
#define __W25Q64_INS_H#define W25Q64_WRITE_ENABLE							0x06
#define W25Q64_WRITE_DISABLE						0x04
#define W25Q64_READ_STATUS_REGISTER_1				0x05
#define W25Q64_READ_STATUS_REGISTER_2				0x35
#define W25Q64_WRITE_STATUS_REGISTER				0x01
#define W25Q64_PAGE_PROGRAM							0x02
#define W25Q64_QUAD_PAGE_PROGRAM					0x32
#define W25Q64_BLOCK_ERASE_64KB						0xD8
#define W25Q64_BLOCK_ERASE_32KB						0x52
#define W25Q64_SECTOR_ERASE_4KB						0x20
#define W25Q64_CHIP_ERASE							0xC7
#define W25Q64_ERASE_SUSPEND						0x75
#define W25Q64_ERASE_RESUME							0x7A
#define W25Q64_POWER_DOWN							0xB9
#define W25Q64_HIGH_PERFORMANCE_MODE				0xA3
#define W25Q64_CONTINUOUS_READ_MODE_RESET			0xFF
#define W25Q64_RELEASE_POWER_DOWN_HPM_DEVICE_ID		0xAB
#define W25Q64_MANUFACTURER_DEVICE_ID				0x90
#define W25Q64_READ_UNIQUE_ID						0x4B
#define W25Q64_JEDEC_ID								0x9F
#define W25Q64_READ_DATA							0x03
#define W25Q64_FAST_READ							0x0B
#define W25Q64_FAST_READ_DUAL_OUTPUT				0x3B
#define W25Q64_FAST_READ_DUAL_IO					0xBB
#define W25Q64_FAST_READ_QUAD_OUTPUT				0x6B
#define W25Q64_FAST_READ_QUAD_IO					0xEB
#define W25Q64_OCTAL_WORD_READ_QUAD_IO				0xE3#define W25Q64_DUMMY_BYTE							0xFF  //这个数据实际没有意义#endifuint8_t MID;
uint16_t DID;uint8_t ArrayWrite[] = {0x55, 0x66, 0x77, 0x88};
uint8_t ArrayRead[4];int main(void)
{OLED_Init();W25Q64_init();OLED_ShowString(1, 1, "MID:   DID:");OLED_ShowString(2, 1, "W:");OLED_ShowString(3, 1, "R:");W25Q64_ReadID(&MID, &DID);OLED_ShowHexNum(1, 5, MID, 2);OLED_ShowHexNum(1, 12, DID, 4);W25Q64_SectorErase(0x000000);//擦除W25Q64_PageProgram(0x000000, ArrayWrite, 4);//写页编程W25Q64_ReadData(0x000000, ArrayRead, 4);//读取OLED_ShowHexNum(2, 3, ArrayWrite[0], 2);OLED_ShowHexNum(2, 6, ArrayWrite[1], 2);OLED_ShowHexNum(2, 9, ArrayWrite[2], 2);OLED_ShowHexNum(2, 12, ArrayWrite[3], 2);OLED_ShowHexNum(3, 3, ArrayRead[0], 2);OLED_ShowHexNum(3, 6, ArrayRead[1], 2);OLED_ShowHexNum(3, 9, ArrayRead[2], 2);OLED_ShowHexNum(3, 12, ArrayRead[3], 2);while (1){}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/138999.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MongoDB的搭建 和crud操作

MongoDB docker 下载 docker run --restartalways -d --name mongo -v /docker/mongodb/data:/data/db -p 27017:27017 mongo:4.0.6使用navcat工具使用MongoDB Crud操作 jar包 <dependency><groupId>org.projectlombok</groupId><artifactId>lom…

小小购物车案例(V3)

效果如下&#xff1a; 可以添加和减少商品个数&#xff08;最少个为1&#xff09;&#xff0c;在添加的时候总价格会随着改变&#xff0c;也可以点击按钮移除商品 代码分为三个模块&#xff08;html、js、css&#xff09; html部分&#xff1a; <!DOCTYPE html> <h…

计算机毕业设计 基于SSM+Vue的物资存储系统(以消防物资为例)的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

2023华为杯研究生数学建模竞赛选题统计+分析

2023年研赛的选题统计&#xff0c;我们主要基于根据两个平台投票统计。最终得出2023年研赛选题人数&#xff0c;这个结果仅供参考&#xff0c;但是应该具备一定的可信度。&#xff08;时间截止为22号中午1点&#xff09; 大家可以看到&#xff0c;AB题仅占10%&#xff0c;E题独…

操作系统:系统调用

1.系统调用的定义 凡是与共享资源有关的操作、会直接影响到其他进程的操作, 就一定需要操作系统介入,就需要通过系统调用来实现。 1.回顾系统调用 操作系统作为用户和计算机硬件之间的接口&#xff0c;需要向上提供一些简单易用的服务。主要包括命令接口和程序接口。其中&a…

Lua学习笔记:探究package

前言 本篇在讲什么 理解Lua的package 本篇需要什么 对Lua语法有简单认知 对C语法有简单认知 依赖Visual Studio工具 本篇的特色 具有全流程的图文教学 重实践&#xff0c;轻理论&#xff0c;快速上手 提供全流程的源码内容 ★提高阅读体验★ &#x1f449; ♠ 一级…

kafka的 ack 应答机制

目录 一 ack 应答机制 二 ISR 集合 一 ack 应答机制 kafka 为用户提供了三种应答级别&#xff1a; all&#xff0c;leader&#xff0c;0 acks &#xff1a;0 这一操作提供了一个最低的延迟&#xff0c;partition的leader接收到消息还没有写入磁盘就已经返回ack&#x…

Unity新收费模式:开启游戏开发者的持续盈利时代

Unity引擎近日宣布自2024年1月1日起&#xff0c;将根据游戏安装量对开发者进行收费。这一消息在游戏开发圈引起了广泛关注和讨论。根据Unity技术博客发布的《Unity收费模式和配套服务更新》一文&#xff0c;他们之所以选择这种计费方式&#xff0c;是因为每次游戏被下载时&…

基于SSM+Vue的亿互游在线平台的设计与开发

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用Vue技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…

Linux下的Docker安装,以Ubuntu为例

Docker是一种流行的容器化平台&#xff0c;它能够简化应用程序的部署和管理。 Docker安装 1、检查卸载老版本Docker&#xff08;为保证安装正确&#xff0c;尽量在安装前先进行一次卸载&#xff09; apt-get remove docker docker-engine docker.io containerd runc 2、Dock…

Qt创建线程(线程池)

1.线程池可以创建线程统一的管理线程&#xff08;统一创建、释放线程&#xff09; 2.使用线程池方法实现点击开始按钮生成10000个随机数&#xff0c;然后分别使用冒泡排序和快速排序排序这10000个随机数&#xff0c;最后在窗口显示排序后的数字&#xff1a; mainwindow.h文件…

基础课-排列组合

1.排列 2.组合 定义 从n个不同元素中&#xff0c;任意取出m(m<n)元素并为一组&#xff0c;叫做从n个不同元素中取出m个元素的一个组合 注意:1.不同元素 2.只取不排 3.相同组合:元素相同 3.把位置当成特殊元素 这个元素不一定入选的时候&#xff0c;把位置当特殊元素 4.插空…

please choose a certificate and try again.(-5)报错怎么解决

the server you want to connect to requests identification,please choose a certificate and try again.(-5)

刷题笔记24——完全二叉树的节点个数

有些事情是不能告诉别人的,有些事情是不必告诉别人的,有些事情是根本没有办法告诉别人的,而且有些事情是,即使告诉了别人,你也会马上后悔的。——罗曼罗兰 222. 完全二叉树的节点个数 java的幂运算要 (int) Math.pow(2,l1)-1计算满二叉树的节点数量公式&#xff1a;2 ^ height…

Linux中swap几乎耗尽,但物理内存还有空余的现象

故障现象&#xff1a; 产生此现象的原因&#xff1a; swappiness 配额设置了偏高的值。 还有一个潜在的因素是某个程序因其自身对内存管理的缺陷&#xff0c;形成了zombie进程、且为及时关闭的处理任务还在持续消耗Mem及swap。 解决办法&#xff1a; 调低swappiness 配额值&…

C语言 coding style

头文件 The #define Guard #define的保护文件的唯一性&#xff0c;防止被多重包含 格式 : <PROJECT>_< FILE>_H_ PROJECT : XS FILE : MV_CTR 头文件的包含顺序 C System FilesOther LibrariesUser LibraryConditional include 作用域 局部变量 -变量定义时需要…

【链表】删除链表的中间节点-力扣2095题

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学…

Spark SQL【电商购买数据分析】

Spark 数据分析 &#xff08;Scala&#xff09; import org.apache.spark.rdd.RDD import org.apache.spark.sql.{DataFrame, SparkSession} import org.apache.spark.{SparkConf, SparkContext}import java.io.{File, PrintWriter}object Taobao {case class Info(userId: Lo…

UML基础与应用之对象图

什么是对象图&#xff1f; 对象图表示一组对象及它们之间的关系&#xff0c;是某一时刻系统详细信息的快照&#xff0c;描述系统交互的静态图形&#xff0c;它由协作的对象组成&#xff0c;但不包含在对象之间传递的任何消息。因为对象是类的实例化&#xff0c;所以说某一时刻…

MS SQL Server问题汇总

1.报SQL Server Agent连接不上的错误 15:38:57.991 [debezium-sqlserverconnector-sqlserver_transaction_log_source-change-event-source-coordinator] WARN i.d.connector.sqlserver.SqlServerStreamingChangeEventSource - No maximum LSN recorded in the database; pl…