Java多线程篇(4)——wait/notify和park/unPark

文章目录

  • Object - wait/notify
    • object.wait()
    • object.notify()
  • LockSupport - park/unpark
    • LockSupport.park()
    • LockSupport.unPark()

Object - wait/notify

object.wait()

在这里插入图片描述
ObjectSynchronizer::wait
在这里插入图片描述
从这段代码可以得到两个信息
1:wait() 底层是对象锁(就是synchronized底层实现的那个对象锁)。这也正是 wait/notify 要在同步代码块内的原因。
2:wait() 的调用会使得对象锁立马膨胀成重量级锁(因为需要使用mutex阻塞线程)。

ObjectMonitor::wait

void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {//...// 封装成ObjectWaiter对象ObjectWaiter node(Self);node.TState = ObjectWaiter::TS_WAIT ;Self->_ParkEvent->reset() ;OrderAccess::fence();//加入 WaitSet Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;AddWaiter (&node) ;Thread::SpinRelease (&_WaitSetLock) ;//...//释放当前线程占用的对象锁exit (true, Self) ;//...//阻塞当前线程if (node._notified == 0) {if (millis <= 0) {Self->_ParkEvent->park () ;} else {ret = Self->_ParkEvent->park (millis) ;}}//...
}

wait主要干了三件事:
1:封装objectWaiter对象并加入 WaitSet
2:释放对象锁
3:调用 ParkEvent.park() 阻塞当前线程(底层调用 pthread_mutex_lock )


object.notify()

同理
ObjectSynchronizer::notify
在这里插入图片描述
ObjectMonitor::notify

void ObjectMonitor::notify(TRAPS) {//...//Policy 移动策略,默认为 2 int Policy = Knob_MoveNotifyee ;//取出waitSet的第一个Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;ObjectWaiter * iterator = DequeueWaiter() ;//根据 Policy 策略移动ObjectWaiter到cxq或者entryList或直接唤醒//  Policy == 0 :头插entrylist//  Policy == 1 :尾插entrylist//  Policy == 2 :如果entrylist为空,那么插入entrylist,否则插入cxq队列//  Policy == 3 :直接插入cxq //  其他:直接唤醒线程,让线程直接调用enterIif (iterator != NULL) {//...// Policy == 0 :头插entrylistif (Policy == 0) {if (List == NULL) {iterator->_next = iterator->_prev = NULL ;_EntryList = iterator ;} else {List->_prev = iterator ;iterator->_next = List ;iterator->_prev = NULL ;_EntryList = iterator ;}}// Policy == 1 :尾插entrylistelse if (Policy == 1) {if (List == NULL) {iterator->_next = iterator->_prev = NULL ;_EntryList = iterator ;} else {ObjectWaiter * Tail ;for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;assert (Tail != NULL && Tail->_next == NULL, "invariant") ;Tail->_next = iterator ;iterator->_prev = Tail ;iterator->_next = NULL ;}} // Policy == 2 :如果entrylist为空,那么插入entrylist,否则插入cxq队列else if (Policy == 2) {if (List == NULL) {iterator->_next = iterator->_prev = NULL ;_EntryList = iterator ;} else {iterator->TState = ObjectWaiter::TS_CXQ ;for (;;) {ObjectWaiter * Front = _cxq ;iterator->_next = Front ;if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {break ;}}}}// Policy == 3 :直接插入cxq else if (Policy == 3) {iterator->TState = ObjectWaiter::TS_CXQ ;for (;;) {ObjectWaiter * Tail ;Tail = _cxq ;if (Tail == NULL) {iterator->_next = NULL ;if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {break ;}} else {while (Tail->_next != NULL) Tail = Tail->_next ;Tail->_next = iterator ;iterator->_prev = Tail ;iterator->_next = NULL ;break ;}}}// 否则直接唤醒线程,让线程直接调用enterIelse {ParkEvent * ev = iterator->_event ;iterator->TState = ObjectWaiter::TS_RUN ;OrderAccess::fence() ;ev->unpark() ;}//...
}

notify主要就是根据 Policy 策略来决定以何种方式唤醒目标线程:
Policy = 0 :头插entrylist
Policy = 1 :尾插entrylist
Policy = 2 :如果entrylist为空,那么插入entrylist,否则插入cxq队列(默认策略)
Policy = 3 :直接插入cxq
其他:直接唤醒线程,让线程直接调用enterI


LockSupport - park/unpark

核心设计思想是 ”许可“,park消费许可,unpark生产许可(同一时间最多最有一个许可)。
_counter:许可
_con:条件变量
_mutex:互斥锁

LockSupport.park()

在这里插入图片描述
每个线程都内置了一个 parker,通过 Parker.park() 方法进行阻塞

Parker与ParkEvent的功能类型,在源码的注释中也提了,计划将Parker合并到ParkEvent
注释原文: In the future we’ll want to think about eliminating Parker and using ParkEvent instead. There’s considerable duplication between the two services.

Parker::park

void Parker::park(bool isAbsolute, jlong time) {//原子替换_counter为0,如果之前_counter为1则直接返回,不阻塞当前线程if (Atomic::xchg(0, &_counter) > 0) return;//...//如果线程被终止,也直接返回if (Thread::is_interrupted(thread, false)) {return;}//解析时间参数timespec absTime;if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at allreturn;}if (time > 0) {unpackTime(&absTime, isAbsolute, time);}//...//如果线程被终止或者获取mutex锁失败直接返回if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {return;}//走到这里说明获mutex锁成功//获锁后再次检查_counter是否大于0,如果是直接消费许可,无需等待。int status ;if (_counter > 0)  { // no wait needed_counter = 0;status = pthread_mutex_unlock(_mutex);assert (status == 0, "invariant") ;OrderAccess::fence();return;}//...//调用 pthread_cond_wait 通过 _con 和 _mutex 配合使用阻塞当前线程直至满足_con条件if (time == 0) {_cur_index = REL_INDEX;status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;}//有超时时间的话,就调用 safe_cond_timedwait , 不管有没有满足条件,一旦超时都会唤醒else {_cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;if (status != 0 && WorkAroundNPTLTimedWaitHang) {pthread_cond_destroy (&_cond[_cur_index]) ;pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());}}//设置_counter为0并释放 mutex 锁_counter = 0 ;status = pthread_mutex_unlock(_mutex) ;//...
}

pthread_cond_wait :阻塞当前线程,直至条件满足。并且阻塞后会自动释放锁,唤醒后又会自动获取锁。

为什么 pthread_cond_wait 需要搭配互斥锁使用?
条件不成立会进入阻塞,假如在进入阻塞的这个期间,条件又成立了,此时最终的结果就是条件成立,但一直在阻塞。同理,唤醒的时候也需搭配互斥锁才能保证不漏掉临界条件。

总结:
1:将许可置为0,同时检查之前许可是否为1,如果为1直接返回
2:获取mutex互斥锁
3:在条件变量上阻塞当前线程(阻塞会自动释放锁,唤醒会自动获取锁)
4:线程被唤醒后重置许可为0,并释放互斥锁


LockSupport.unPark()

同理
Parker::unpark

void Parker::unpark() {int s, status ;//获取mutex锁status = pthread_mutex_lock(_mutex);assert (status == 0, "invariant") ;s = _counter;//设置许可为1_counter = 1;//如果许可原本小于1表示线程可能被阻塞(parked),需要唤醒线程。if (s < 1) {//如果线程确实被阻塞(即 _cur_index 不等于-1)//调用 pthread_cond_signal 唤醒线程if (_cur_index != -1) {	if (WorkAroundNPTLTimedWaitHang) {status = pthread_cond_signal (&_cond[_cur_index]);assert (status == 0, "invariant");status = pthread_mutex_unlock(_mutex);assert (status == 0, "invariant");} else {int index = _cur_index;status = pthread_mutex_unlock(_mutex);assert (status == 0, "invariant");status = pthread_cond_signal (&_cond[index]);assert (status == 0, "invariant");}}//反之什么都不做,直接释放锁返回 else {pthread_mutex_unlock(_mutex);assert (status == 0, "invariant") ;}}//如果许可原本为1,什么都不做,直接释放锁返回 else {pthread_mutex_unlock(_mutex);assert (status == 0, "invariant") ;}
}

总结:
1:获取互斥锁
2:置许可为1
3:唤醒在条件变量上等待的线程
4:释放互斥锁


wait/notify是一种等待/通知机制。等待啥?线程对互斥资源的等待。通知啥?通知线程互斥资源已经没人在用可以去抢占了。因为描述的是对互斥资源的竞争,所以wait/notify在object上(任何对象都可以是互斥资源)。
而park/unPark是一种对线程的精准控制,他更多的是描述线程之间的先后顺序(比如生产者线程和消费者线程)。

park/unPark相对于wait/notify
更直观,以thread为操作对象。
更精准,可以指定唤醒那个线程。
更简单,无需在synchronized代码块内。
更灵活,unpark方法可以在park方法前调用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/139219.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《C++ primer》练习6.36-6.38:书写返回数组引用的函数声明

最近看C primer&#xff0c;看到《C primer》6.3.3练习&#xff0c;要求书写返回数组引用的函数声明&#xff0c;觉得有必要实践记录一下。 这里先总结返回数组的引用的的函数声明写法&#xff08;下面的Type是数组元素的类型&#xff0c;可以是int、float等&#xff0c;如果要…

ICCV 2023 | MPI-Flow:从单视角构建的多平面图像中学习光流

ICCV 2023 | MPI-Flow&#xff1a;从单视角构建的多平面图像中学习光流 引言&#xff1a;主要贡献&#xff1a;Motivation&#xff1a;算法细节&#xff1a;Optical Flow Data GenerationIndependent Object MotionsDepth-Aware Inpainting 实验结果&#xff1a; 来源&#xff…

2023年前端流行什么技术和框架了?

Web前端三大主流框架有React、Vue.js和Angular&#xff0c;由于接触过Vue.js&#xff0c;接下来主讲最新的Vue3.0&#xff01; Vue3.0作为最新版本的Vue.js框架&#xff0c;拥有更强大的性能和更丰富的功能&#xff0c;为低代码开发平台注入了全新的活力。而JNPF快速开发平台作…

Linux新手教程||Linux vi/vim

所有的 Unix Like 系统都会内建 vi 文书编辑器&#xff0c;其他的文书编辑器则不一定会存在。 但是目前我们使用比较多的是 vim 编辑器。 vim 具有程序编辑的能力&#xff0c;可以主动的以字体颜色辨别语法的正确性&#xff0c;方便程序设计。 什么是 vim&#xff1f; Vim是…

Chrome浏览器删除网站cookies的解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

3.wifi开发,网络编程

网络协议栈LwIP WiFi UDP Clinet编程 WiFi UDP Server编程 WiFi TCP Client编程 WiFi TCP Server编程 一。LWIP原理介绍&#xff0c;API介绍&#xff0c;文件结构 1.Lwip支持的协议 2.API 3.文件结构 1.api目录&#xff1a;应用程序接口文件。 2.arch目录&#xff1a;与硬件和…

登录业务实现

登录业务实现&#xff1a; 登录成功/失败实现 -> pinia管理用户数据及数据持久化 -> 不同登录状态的模板适配 -> 请求拦截器携带token -> 退出登录实现 -> token失效&#xff08;401响应拦截&#xff09; 1. 登录成功/失败实现 当表单校验通过时&a…

iOS线上闪退问题解决方案

iOS线上闪退问题的收集工具是关键&#xff0c;它们可以帮助你及时发现和解决应用程序中的崩溃问题。以下是一些常用的iOS线上闪退问题收集工具及其使用方法&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合…

一招解除csdn复制限制

先看这个代码 python读取英文pdf翻译成中文pdf文件导出代码 想要复制代码&#xff0c;csdn有限制怎么办&#xff08;csdn流氓&#xff0c;无耻&#xff09; 解除方法 ctrlu 看效果

Google拟放弃博通自行研发AI芯片 | 百能云芯

谷歌计划自行研发人工智能&#xff08;AI&#xff09;芯片&#xff0c;考虑将博通&#xff08;Broadcom&#xff09;从其供应商名单中剔除&#xff0c;但谷歌强调双方的合作关系不会受到影响。 根据美国网络媒体《The Information》的报道&#xff0c;谷歌高层正在讨论可能在20…

VisualStudio配置opencv

下载opencv 链接&#xff1a;https://opencv.org/releases/ 我下载的是4.7.0&#xff0c;选择windows下载。 下载成功后打开exe文件&#xff0c;选择路径安装。 配置环境变量 安装成功后找到安装目录&#xff0c;复制bin目录路径。 我的是放在了D盘 D:\Opencv4.7.0\opencv…

uni-app, 实现 scroll-view 自动滚动到底部,并控制触发频率

实现思路 通过 scroll-view 组件的 scroll-top 属性可以设置容器竖向滚动条位置 属性名Valuescroll-y允许纵向滚动scroll-top设置竖向滚动条位置 想要实现 scroll-view 滚动到底部&#xff0c;只需要让 scroll-top scroll-view 内容高度 - scroll-view 容器本身高度&#…

黑马JVM总结(十九)

&#xff08;1&#xff09;GC调优1 通过官网查看查看JVM的参数&#xff1a; 可以使用java命令查看当前环境下的虚拟机参数&#xff1a; 学会使用一些工具如前面学的jmap &#xff0c;jconsole等等工具 &#xff08;2&#xff09;GC调优2 垃圾回收调优只是众多调优中的一个方…

聊聊wireshark的进阶使用功能 | 京东云技术团队

1. 前言 emmm&#xff0c;说起网络知识学习肯定离不来wireshark工具&#xff0c;这个工具能够帮助我们快速地定位网络问题以及帮助正在学习网络协议这块的知识的同学验证理论与实际的一大利器&#xff0c;平时更多的只是停留在初步的使用阶段。也是利用部门内部的网络兴趣小组…

关于分布式一致性

一致性&#xff08;consistency&#xff09; 说到一致性&#xff0c;我们可能最先想到的数据库里的事务 这里的讨论的是分布式的一致性&#xff0c;事务就简化一下&#xff0c;只考虑Read/Write 先列举一下事务的种类&#xff1a; 单机的事务&#xff1a;多个复杂事务发生在一…

【异常报错】must call Vue.use(Vuex)

这个错误应该是在创建Vuex中出现的 把你main.js中的Vue.use(Vuex)写到store中&#xff0c;这里我的store/index.js中,即完美解决 其实仔细想想也可以发现&#xff0c;import就把整个文件给引入了&#xff0c;而index.js中有创建Store的实例&#xff0c;而在这时我们还没有Vue.…

Redis集群架构搭建——主从、哨兵、集群

上一篇文章Ubuntu上通过源码方式安装Redis已经介绍了如何安装redis&#xff0c;在这篇文章中&#xff0c;将会教大家搭建Redis的几种高可用的架构&#xff1a;主从架构、哨兵集群、Cluster集群。 本篇文章使用的redis版本为6.2.13&#xff0c;不同版本的配置可能有略微的区别&a…

腾讯云微服务平台 TSF 异地多活单元化能力重磅升级

导语 2023腾讯全球数字生态大会已于9月7-8日完美落幕&#xff0c;40专场活动展示了腾讯最新的前沿技术、核心产品、解决方案。 微服务与消息队列专场&#xff0c;腾讯云微服务平台 TSF 产品经理张桢带来了《腾讯云微服务平台 TSF 异地多活单元化能力重磅升级》的精彩演讲。本…

Centos7部署单机版MongoDB

目录 Centos7部署单机版MongoDBMongoDB介绍数据模型索引分布式高可用性查询语言驱动和社区用途缺点 下载并解压安装包创建相关文件夹和文件编辑mongod.conf文件启动mongodb创建管理员用户终止MongoDB服务配置自启动服务关闭SELinux编辑自启动服务文件mongodb服务命令 Centos7部…

iOS17.0.2更新修复iPhone 15系列机型数据迁移问题,附新机快速数据迁移办法!

iPhone 15 系列机型已于今日正式发售&#xff0c;为解决iPhone15这些机型出现的数据迁移问题&#xff0c;苹果紧急发布了 iOS 17.0.2 更新&#xff0c;内部版本号为 21A350。 需要注意的是&#xff0c; iOS 17.0.2 更新仅适用于 iPhone 15、iPhone 15 Plus、iPhone 15 Pro 和 …