加速企业AI实施:成功策略和效率方法

文章目录

  • 写在前面
    • 面临的挑战
    • MlOps简介
    • 好书推荐
  • 写作末尾

写在前面

作为计算机科学领域的一个关键分支,机器学习在当今人工智能领域中占据着至关重要的地位,广受瞩目。机器学习通过深入分析大规模数据并总结其中的规律,为我们提供了解决许多实际问题的强大工具。这一领域的发展已经在各行各业带来了深刻的变革和创新。

机器学习的应用范围广泛,涵盖了自然语言处理、计算机视觉、数据分析、预测建模等众多领域。它已经在医疗保健、金融、制造业、零售等行业中催生了创新,帮助企业更好地理解其数据、提高效率、优化决策,并提供个性化的产品和服务。

随着机器学习技术的不断演进,越来越多的企业已经认识到其价值,并将其纳入到战略规划中,将其视为核心竞争力的一部分。这些企业已经成功地将机器学习技术应用于各种实际业务场景中,从而取得了巨大的竞争优势。

在这里插入图片描述

面临的挑战

但是,机器学习应用落地并非一件轻松的事情,AI开发者往往需要面对各个环节的挑战。这些环节包括目标定义、数据收集、数据清洗、特征提取、模型选择、模型训练、模型部署和模型监控等,其中任何一个环节出现失误,都可能影响算法和策略在最终业务中落地的效果,造成成倍的损失。反过来看,利用工程化技术去优化模型的自学习能力,能让模型保持持续更新、迭代和演进,随着数据和业务的变化不断进行自适应,避免衰退,始终保持在最佳状态,为业务场景带来更好的效果、更多的价值。

除了效果之外,机器学习应用的开发效率也是阻碍落地的关键因素。像Google这样的互联网领头羊企业,其AI科学家与AI工程师也常常会遇到“开发一周,上线三月”的情况。因此需要针对每个模型花费数月时间进行正确性排查,覆盖模型鲁棒性、数据时序穿越、线上线下一致性、数据完整性等各个维度。

从团队协作角度来看,数据、模型、算法的开发和部署需要不同的技能和知识,需要团队敏捷地进行沟通和协作。因此,建设一种可以在任何时间、任何环境被信任的团队合作模式、沟通渠道以及反馈机制,形成一个如敏捷迭代、Kubernetes一样的事实标准,可方便AI工程师敏捷、快速地上线AI应用。

除了效果和效率两个AI开发者所关注的维度外,成本、人才、安全也是机器学习应用开发落地时需要权衡的。

  • 成本:无论软件、硬件成本还是人力成本,企业需要在落地AI应用的效益和成本之间进行权衡,确保投入产出比是可行的,而这要求开发者对成本和产出有更加精准的预测和判断。

  • 人才:人才短缺是一个普遍问题,哪怕是在硅谷、中关村等科技人才聚集地,具备机器学习和软件开发能力的人也是供不应求的。开发者需要更好地精进技能,规划好AI工程化的技能树和学习路径,把自己变成有竞争力的人才。

  • 安全:几乎所有的企业都会要求AI应用背后的数据、算法和模型符合法规和标准。开发者需要确保AI应用和系统不会向企业外部泄露数据,不让非法的攻击侵入并影响业务系统。

MlOps简介

MLOps是一种结合机器学习(ML)和运维(Ops)的方法,旨在将机器学习模型成功部署到生产环境中,并持续监控、维护和优化这些模型。在MLOps工程实践中,使用各种工具和技术来实现这一目标,并确保机器学习应用在企业级环境中运行良好。以下是一些与MLOps相关的工具、技术和企业级应用:

1. 版本控制工具:

  • Git:用于跟踪和管理机器学习项目的代码版本。
  • GitHub、GitLab、Bitbucket:这些平台提供了托管代码、协作开发和持续集成/持续交付(CI/CD)的功能,有助于团队合作。

2. 自动化构建和部署:

  • Docker:用于容器化机器学习应用,确保在不同环境中一致运行。
  • Kubernetes:用于自动化部署、扩展和管理容器化应用,包括机器学习模型。
  • Jenkins、Travis CI、CircleCI:用于自动化构建、测试和部署机器学习模型。

3. 模型管理:

  • MLflow:用于跟踪、管理和部署机器学习模型的开源平台。
  • Kubeflow:用于在Kubernetes上管理端到端的机器学习工作流程和模型部署。

4. 持续监控和日志记录:

  • Prometheus、Grafana:用于监控机器学习应用的性能和健康状况。
  • ELK Stack(Elasticsearch、Logstash、Kibana):用于日志记录、分析和可视化。

5. 自动化测试和验证:

  • Unit测试和集成测试:确保机器学习代码的准确性和稳定性。
  • 模型验证和验证:验证模型的性能、准确性和鲁棒性。

6. 持续集成/持续交付(CI/CD):

  • CI/CD管道:将机器学习模型从训练到部署的自动化流程。
  • Argo:用于定义、运行和维护复杂的机器学习工作流程。

7. 安全性和合规性:

  • 模型安全性:确保模型不受恶意攻击。
  • 合规性:确保机器学习应用符合法规和隐私政策。

8. 模型解释和可解释性:

  • SHAP(SHapley Additive exPlanations):用于解释模型预测的开源库。
  • LIME(Local Interpretable Model-agnostic Explanations):提供对模型预测的局部解释。

9. 管理和协作工具:

  • 项目管理工具:如JIRA、Trello,用于跟踪任务和进度。
  • 协作平台:如Slack、Microsoft Teams,用于团队沟通和协作。

10. 云服务提供商:

  • .AWS、Azure、Google Cloud:提供了丰富的云基础设施和机器学习服务,用于托管和部署机器学习模型。

在企业级应用中,MLOps实践需要综合运用这些工具和技术,以确保机器学习项目能够顺利地从开发到部署,并保持高可用性和性能。这需要一个跨职能的团队,包括数据科学家、工程师、运维人员和安全专家,共同协作以实现成功的MLOps实践。

好书推荐

正是在这样的背景下,MLOps快速成为机器学习生产落地中不可或缺的关键能力。构建一个靠谱、永远可以信任、从容应对新技术演进的机器学习系统,匹配让AI开发者高效且省心省力的机器学习应用开发流程,成为当前机器学习领域面临的极为关键的问题之一。

在这里插入图片描述

1. 目标

作为当今企业和研究人员关注的热点领域,MLOps相关的知识和实践仍然相对分散,因此,迫切需要一本系统化介绍MLOps实践方法的书籍。希望本书能够:

  • 梳理MLOps的核心概念和方法,帮助读者全面了解MLOps的基本原理;

  • 提供实用的案例分析和操作指南,使读者能够在实际项目中应用MLOps,提高工作效率;

  • 针对不同规模的企业和团队,给出相应的MLOps最佳实践,帮助它们量身定制MLOps策略;

  • 探讨MLOps的未来发展趋势,以及如何将新技术方向(如人工智能伦理、可解释性等)融入MLOps实践。

MLOps实践的推广和普及需要时间和努力,希望本书可以为研究人员提供全面、系统和实用的指南,以便他们在实际应用中构建可靠、高效和稳健的机器学习模型,实现业务价值最大化。

2. 内容简介

这是一本能指导企业利用MLOps技术构建可靠、高效、可复用、可扩展的机器学习模型,从而实现AI工程化落地的著作。本书由国内AI领域的独角兽企业第四范式的联合创始人领衔撰写,从工具、技术、企业级应用、成熟度评估4个维度对MLOps进行了全面的讲解。

本书的主要内容包括如下9个方面:

  • MLOps的核心概念和方法,可以帮助读者全面了解MLOps的基本原理;
  • MLOps涉及的几种角色,以及这些角色之间如何协作;
  • 机器学习项目的基础知识和全流程,是学习和应用MLOps的基础;
  • MLOps中的数据处理、主要流水线工具Airflow和MLflow、特征平台和实时特征平台OpenMLDB、推理工具链Adlik,为读者系统讲解MLOps的技术和工具;
  • 云服务供应商的端到端MLOps解决方案;
  • 第四范式、网易、小米、腾讯、众安金融等企业的MLOps工程实践案例和经验;
  • MLOps的成熟度模型,以及微软、谷歌和信通院对MLOps成熟度模型的划分;
  • 针对不同规模的企业和团队的MLOps最佳实践,帮助他们量身定做MLOps策略;
  • MLOps的未来发展趋势,以及如何将新技术融入MLOps实践。

本书深入浅出、循序渐进地讲解了如何在实际项目中利用MLOps进行机器学习模型的部署、监控与优化,以及如何利用MLOps实现持续集成与持续交付等高效的工作流程。同时,本书通过企业级的MLOps案例和解决方案,帮助读者轻松掌握MLOps的设计思路以及学会应用MLOps解决实际问题。

3. 读者对象

本书旨在帮助读者掌握MLOps技术,从而构建可靠、可重复使用和可扩展的机器学习工作流程。我们更加强调实践和操作,通过示例来帮助读者更好地理解并应用这些技术和工具。

本书适用的读者对象如下。

  • 数据科学家和AI研究人员:希望了解如何将自己的模型和算法更有效地部署到实际生产环境,提高工作效率和质量。

  • 机器学习工程师和DevOps工程师:想要掌握MLOps的最佳实践,以便在组织内更好地支持AI和ML项目的开发、部署与维护。

  • 产品经理和业务负责人:希望了解MLOps的概念和实践,以便更好地推动组织内AI和ML项目的落地,提高项目成功率和产出价值。

  • 教育者和学者:在教学和研究过程中需要掌握MLOps的理论和实践知识,以便为学生和咨询者提供指导。

  1. 专家推荐

本书作者根据自己多年在软件研发、运维、DevOps和机器学习等领域的从业经验,对MLOps这一新生事物的原理和工具进行了全面系统的介绍,并结合多家企业的实践案例总结整理出一系列MLOps最佳实践,覆盖端到端机器学习全生命周期,涉及AI科学家和AI工程师在内的多个角色,知识新颖,内容丰富,极具参考价值。相信大部分AI从业人员会从中受益,强烈推荐!
—— 崔宝秋 小米集团前副总裁

这是一本业界真正需要的书。它全面介绍了AI工程化落地的全过程,包括面对的挑战、要解决的问题、常用工具和平台,以及企业的实践案例。这样一本内容全面、翔实的工具书能让读者对AI技术在企业落地方面有比较深的认识。希望它能帮助更多企业AI的应用者、工程师跨越AI工程化的鸿沟。
—— 堵俊平 LFAI & DATA基金会前董事主席

本书介绍了MLOps的完整流程、方法论、开源工具,并包含了网易云音乐、众安保险、小米商城、腾讯金融等的一手实践案例,对行业内外的工程师都有很高的学习和参考价值。
—— 戈君 字节跳动架构师
bRPC项目创始人/Apache VP

MLOps可以使得人工智能应用从低效能的手工制作模式,逐渐演变成自动化的、高效的流水线生产模式,将有力地促进人工智能规模化应用。盼此关于MLOps的书也能为大家学习人工智能指明方向。
—— 孟伟 中兴通讯开源战略总监

本书不仅从原理上阐述了MLOps的基本概念、方法、核心技术,更从实践角度给出了MLOps全流程搭建工具,并提供了丰富的互联网大厂典型MLOps平台搭建案例,以飨读者。内容专业翔实,极具可操作性。强烈推荐给AI算法和平台工程师,常读常新,大有裨益。
—— 陶阳宇 腾讯机器学习平台部总监

MLOps是现代软件工程理念下的机器学习系统构建方法论,指导企业在智能化升级中构建AI中台。本书全面介绍了MLOps的核心技术,结合丰富的业界实践向读者展示了AI原生时代下的AI中台技术全貌!
—— 王耀 百度智能云技术委员会主席

MLOps可以降低人工智能应用开发和维护的技术门槛和成本,是人工智能走进各行各业的关键技术。本书介绍了业界多家领先企业在MLOps方面的实践经验,具有非常高的参考价值。
—— 汪源 网易副总裁

本书作者长期工作在业务或咨询第一线,从工程师视角介绍机器学习在企业实践中的落地,系统阐述机器学习在实际工作中的困难和解决方案,是一本很好的实践指南。
—— 于洋 众安保险首席风险官

MLOps最重要的任务是保证机器学习应用生命周期中各个环节紧密协作,让应用的智能程度不断提高,真正解决用户在现实世界中的问题。感谢谭中意等专家的长期努力,让我们在CSDN中文社区中能看到高质量的经验和智慧结晶。期待这本书能帮助我们的研究员和工程师跨越各式各样的AI应用大峡谷。
—— 邹欣 CSDN副总裁

在这里插入图片描述

购买链接: https://item.m.jd.com/product/14141114.html

写作末尾

🌻《MLOps工程实践:工具、技术与企业级应用 》:免费包邮送出
🌴根据博客阅读量本次活动一共赠书若干本,评论区抽取若干位小伙伴免费送出2本书
🌵参与方式:关注博主、点赞、收藏、评论区任意评论(不低于10个字,被折叠了无法参与抽奖,切记要点赞+收藏,否则抽奖无效,每个人最多评论三次)
🌼活动截止时间:2023-10-09 12:00:00
🍒开奖时间:2023-10-09 14:00:00
🍀中奖通知方式:私信通知
🍉兑奖方式:截图证明

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/143682.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】STL之list深度剖析及模拟实现

目录 前言 一、list 的使用 1、构造函数 2、迭代器 3、增删查改 4、其他函数使用 二、list 的模拟实现 1、节点的创建 2、push_back 和 push_front 3、普通迭代器 4、const 迭代器 5、增删查改(insert、erase、pop_back、pop_front) 6、构造函数和析构函数 6.1、默认构造…

java常用API之Object

Objct toString() package myObjct;public class myObjct {public static void main(String[] args) {Object onew Object();System.out.println(o.toString());//打印结果java.lang.Object27f674d} }java.lang.Object27f674d后面的27f674d是地址值 package myObjct;import ja…

2022年软件设计师下半年真题解析(上午+下午)

1 RISC 以下关于RISC(精简指令集计算机)特点的叙述中,错误的是()。 A.对存储器操作进行限制,使控制简单化B.指令种类多,指令功能强 C.设置大量通用寄存器 D.选取使用频率较高的一些指令,提高执行速度 RISC(Reduced Instruction Se…

油猴(篡改猴)学习记录

第一个Hello World 注意点:默认只匹配了http网站,如果需要https网站,需要自己添加match https://*/*代码如下 这样子访问任意网站就可以输出Hello World // UserScript // name 第一个脚本 // namespace http://tampermonkey.net/ // version 0.1 // descri…

Flask扩展:简化开发的利器以及26个日常高效开发的第三方模块(库/插件)清单和特点总结

目录 寻找扩展 使用扩展 创建扩展 26个常用的Flask扩展模块 总结 原文:Flask扩展:简化开发的利器以及26个日常高效开发的第三方模块(库/插件)清单和特点总结 (qq.com) Flask是一个轻量级的Python Web框架,它提供…

数据结构--栈

线性表的定义 前面文章有讲过,线性表就是一次保存单个同类型元素,多个元素之间逻辑上连续 例子:数组,栈,队列,字符串 栈 1.1 栈和队列的特点 栈和队列都是操作受限的线性表。 前面学过的数组,…

Cocos Creator3.8 实战问题(一)cocos creator prefab 无法显示内容

问题描述: cocos creator prefab 无法显示内容, 或者只显示一部分内容。 creator编辑器中能看见: 预览时,看不见内容: **问题原因:** prefab node 所在的layer,默认是default。 解决方法&…

wps及word通配匹配与正则匹配之异同

前言 今天在chatgpt上找找有什么比赛可以参加。下面是它给我的部分答案,我想将其制成文档裱起来,并突出比赛名方便日后查找。 这时理所当然地想到了查找替换功能,但是当我启用时却发现正则匹配居然没有了,现在只有通配匹配了。 …

关于接口测试——自动化框架的设计与实现

一、自动化测试框架 在大部分测试人员眼中只要沾上“框架”,就感觉非常神秘,非常遥远。大家之所以觉得复杂,是因为落地运用起来很复杂;每个公司,每个业务及产品线的业务流程都不一样,所以就导致了“自动化…

从零开始之了解电机及其控制(11)实现空间矢量调制

广泛地说,空间矢量调制只是将电压矢量以及磁场矢量在空间中调制到任意角度,通常同时最大限度地利用整个电压范围。 其他空间矢量调制模式确实存在,并且根据您最关心的内容,它们可能值得研究。 如何实际执行这种所谓的交替反向序列…

java进阶-Netty

Netty 在此非常感谢尚硅谷学院以及韩顺平老师在B站公开课 Netty视频教程 Netty demo代码文件 I/O 说NIO之前先说一下BIO(Blocking IO),如何理解这个Blocking呢?客户端监听(Listen)时,Accept是阻塞的&…

XML文件反序列化读取

原始XML文件 <?xml version"1.0" encoding"utf-8" ?> <School headmaster"王校长"><Grade grade"12" teacher"张老师"><Student name"小米" age"18"/><Student name&quo…

freertos的任务调度器的启动函数分析(根据源码使用)

volatile uint8_t * const pucFirstUserPriorityRegister ( uint8_t * ) ( portNVIC_IP_REGISTERS_OFFSET_16 portFIRST_USER_INTERRUPT_NUMBER ); 通过宏pucFirstUserPriorityRegister0xE000E400&#xff08;根据宏名字&#xff0c;这是NVIC寄存器地址&#xff09; 查手册…

服务器补丁管理软件

随着漏洞的不断上升&#xff0c;服务器修补是增强企业网络安全的典型特征。作为业务关键型机器&#xff0c;计划服务器维护的停机时间无疑是一件麻烦事。但是&#xff0c;借助高效的服务器补丁管理软件&#xff08;如 Patch Manager Plus&#xff09;&#xff0c;管理员可以利用…

一朵华为云,如何做好百模千态?

点击关注 文丨刘雨琦、郝鑫 2005年华为提出网络时代的“All IP”&#xff0c;2011年提出数字化时代的“All Cloud”&#xff0c;2023年提出智能时代的“All Intelligence”。 截至目前&#xff0c;华为的战略升级经历了三个阶段。 步入智能化&#xff0c;需要迎接的困难依然…

AIGC快速入门体验之虚拟对象

AIGC快速入门体验之虚拟对象 一、什么是AIGC二、AIGC应用场景2.1 代码生成2.2 图片生成2.3 对象生成 三、AIGC虚拟对象3.1 AIGC完全免费工具3.2 快速获取对象3.3 给对象取名3.4 为对象写首诗3.5 和对象聊聊天 一、什么是AIGC AIGC是生成式人工智能&#xff08;Artificial Intel…

28 drf-Vue个人向总结-1

文章目录 前后端分离开发展示项目项补充知识开发问题浏览器解决跨域问题 drf 小tips设置资源root目录使用自定义的user表设置资源路径media数据库补充删除表中数据单页面与多页面模式过滤多层自关联后端提交的数据到底是什么jwt token登录设置普通的 token 原理使用流程解析 jw…

使用代理后pip install 出现ssl错误

window直接设置代理 httphttp://127.0.0.1:7890;httpshttp://127.0.0.1

8月最新修正版风车IM即时聊天通讯源码+搭建教程

8月最新修正版风车IM即时聊天通讯源码搭建教程。风车 IM没啥好说的很多人在找,IM的天花板了,知道的在找的都知道它的价值,开版好像就要29999,后端加密已解,可自己再加密,可反编译出后端项目源码,已增加启动后端需要google auth双重验证,pc端 web端 wap端 android端 ios端 都有 …

NPDP产品经理认证怎么报名?考试难度大吗?

PMDA&#xff08;Product Development and Management Association&#xff09;是美国产品开发与管理协会&#xff0c;在中国由中国人才交流基金会培训中心举办NPDP&#xff08;New Product Development Professional&#xff09;考试&#xff0c;该考试是产品经理国际资格认证…