DeepSeek图解10页PDF

以前一直在关注国内外的一些AI工具,包括文本型、图像类的一些AI实践,最近DeepSeek突然爆火,从互联网收集一些资料与大家一起分享学习。

本章节分享的文件为网上流传的DeepSeek图解10页PDF,免费附件链接给出。

1 本地

1  本地部署并运行DeepSeek

1.1 为什么要在本地部署DeepSeek

在本地搭建大模型(如DeepSeek)具有多个重要的优势,比如:
1. 保护隐私与数据安全。数据不外传:本地运行模型可以完全避免数据上传至云端,确保敏感信息不被第三方访问。
2. 可定制化与优化。支持微调(Fine-tuning):可以根据特定业务需求对模型进行微调,以适应特定任务,如行业术语、企业内部知识库等。
3. 离线运行,适用于无网络环境。可在离线环境下运行:适用于无互联网连接或网络受限的场景。提高系统稳定性:即使云服务宕机,本地大模型依然可以正常工作,不受外部因素影响。

1.2 DeepSeek 本地部署三个步骤

一共只需要三步,就能做到DeepSeek 在本地运行并与它对话。

第一步,使用的是ollama 管理各种不同大模型,ollama 比较直接、干净,一键下载后安装就行,安装过程基本都是下一步。


Ollama的官网下载地址:Ollama

支持macos、windows、linux多端的安装包管理

Ollama windows安装_ollama 下载-CSDN博客安装windows下的ollama可以参考以上链接写的较为详细:Ollama windows安装_ollama 下载-CSDN博客

安装后,打开命令窗口,输入ollama,然后就能看到它的相关指令,一共10 个左右的命令,如下图2所示,就能帮我们管理好不同大模型:

第二步,命令窗口输入:ollama pull deepseek-r1:1.5b,下载大模型deepseekr1到我们自己的电脑,如下图3所示:

至此在我们本地电脑,DeepSeek 大模型就下载到我们本地电脑,接下来第三步就可以直接使用和它对话了。在cmd(Windows 电脑) 或terminal(苹果电脑) 执行命令:ollama run deepseek-r1:1.5b,很快就能进入对话界面,如下图4所示:

1.3 DeepSeek 本地运行使用演示

基于上面步骤搭建完成后,接下来提问DeepSeek 一个问题:请帮我分析Python 编程如何从零开始学习?,下面是它的回答,首先会有一个think标签,这里面嵌入的是它的思考过程,不是正式的回复:

等我们看到另一个结束标签think 后,表明它的思考已经结束,下面一行就是正式回答,如下图6所示:

2 DeepSeek 零基础必知

        为了更深入理解DeepSeek-R1,首先需要掌握LLM 的基础知识,包括其工作原理、架构、训练方法。
        近年来,人工智能(AI)技术的快速发展催生了大型语言模型((LargeLanguage Model, LLM))的兴起。LLM 在自然语言处理(NLP)领域发挥着越来越重要的作用,广泛应用于智能问答、文本生成、代码编写、机器翻译等任务。LLM 是一种基于深度学习的人工智能模型,其核心目标是通过预测下一个单词来理解和生成自然语言。训练LLM 需要大量的文本数据,使其能够掌握复杂的语言模式并应用于不同任务。接下来,咱们先从较为基础的概念开始。

2.1 LLM 基础概念
  

模型参数。其中比较重要的比如deepseek-r1:1.5b, qwen:7b, llama:8b,这里的1.5b, 7b、8b 代表什么?b 是英文的billion,意思是十亿,7b 就是70 亿,8b 就是80 亿,70 亿、80 亿是指大模型的神经元参数(权重参数weight+bias)的总量。目前大模型都是基于Transformer 架构,并且是很多层的Transformer结构,最后还有全连接层等,所有参数加起来70 亿,80 亿,还有的上千亿。

通用性更强。大模型和我们自己基于某个特定数据集(如ImageNet、20News-Group)训练的模型在本质上存在一些重要区别。主要区别之一,大模型更加通用,这是因为它们基于大量多样化的数据集进行训练,涵盖了不同领域和任务的数据。这种广泛的学习使得大模型具备了较强的知识迁移能力和多任务处理能力,从而展现出“无所不知、无所不晓”的特性。相比之下,我们基于单一数据集训练的模型通常具有较强的针对性,但其知识范围仅限于该数据集的领域或问题。因此,这类模型的应用范围较为局限,通常只能解决特定领域或单一任务的问题。Scaling Laws 大家可能在很多场合都见到过。它是一个什么法则呢?大模型之所以能基于大量多样化的数据集进行训练,并最终“学得好”,核心原因之一是Scaling Laws(扩展规律)的指导和模型自身架构的优势。Scaling Laws 指出参数越多,模型学习能力越强;训练数据规模越大、越多元化,模型最后就会越通用;即使包括噪声数据,模型仍能通过扩展规律提取出通用的知识。而Transformer 这种架构正好完美做到了Scaling Laws,Transformer 就是自然语言处理领域实现扩展规律的最好的网络结构。亿。
  

Scaling Laws 大家可能在很多场合都见到过。它是一个什么法则呢?大模型之所以能基于大量多样化的数据集进行训练,并最终“学得好”,核心原因之一是Scaling Laws(扩展规律)的指导和模型自身架构的优势。Scaling Laws 指出参数越多,模型学习能力越强;训练数据规模越大、越多元化,模型最后就会越通用;即使包括噪声数据,模型仍能通过扩展规律提取出通用的知识。而Transformer 这种架构正好完美做到了Scaling Laws,Transformer 就是自然语言处理领域实现扩展规律的最好的网络结构。

2.2 Transformer 基础架构

LLM 依赖于2017 年Google 提出的Transformer 模型,该架构相比传统的RNN(递归神经网络)和LSTM(长短时记忆网络)具有更高的训练效率和更强的长距离依赖建模能力。Transformer 由多个关键组件组成:1. 自注意力机制(Self-Attention):模型在处理文本时,会自动关注句子中的重要单词,理解不同词语间的联系。2. 多头注意力(Multi-Head Attention):使用多个注意力头同时分析不同的语义信息,使得模型的理解能力更强。3. 前馈神经网络(FFN):非线性变换模块,提升模型的表达能力。4. 位置编码(Positional Encoding):在没有循环结构的情况下,帮助模型理解单词的顺序信息。

2.3 LLM 基本训练方法


2.3.1 预训练(Pretraining)


LLM 训练通常采用大规模无监督学习,即:1. 从互联网上收集大量文本数据,如书籍、新闻、社交媒体等。2. 让模型学习词语之间的概率分布,理解句子结构。3. 训练目标是最小化预测误差,使其能更好地完成语言任务。


2.3.2 监督微调(Supervised Fine-Tuning, SFT)


在预训练之后,通常需要对模型进行监督微调(SFT):使用人工标注的数
据集,让模型在特定任务上优化表现。调整参数,使其更符合人类需求,如
问答、对话生成等任务。


2.3.3 强化学习(Reinforcement Learning, RL)


采用强化学习(RL)方法进行优化,主要通过人类反馈强化学习(RLHF,
Reinforcement Learning from Human Feedback):

3 DeepSeek-R1 精华图解


3.1 DeepSeek-R1 完整训练过程


DeepSeek-R1 主要亮点在于出色的数学和逻辑推理能力,区别于一般的通用AI 模型。其训练方式结合了强化学习(RL)与监督微调(SFT),创造了一种高效训练,高推理能力AI 模型的方法。
整个训练过程分为核心两阶段,第一步训练基于DeepSeek-V3 论文中的基础模型(而非最终版本),并经历了SFT 和基于纯强化学习调优+ 通用性偏好调整,如下图7所示:

训练起点。DeepSeek-R1 的训练起点是DeepSeek-v3-Base,作为基础模型进行训练,为后续的推理优化奠定基础。

3.1.1 核心创新1:含R1-Zero 的中间推理模型

如图7所示,推理导向的强化学习(Reasoning-Oriented Reinforcement Learning) 得到中间推理模型(Iterim reasoning model), 图8会详细解释中间模 型的训练过程


DeepSeek-R1 核心贡献:首次验证了通过纯强化学习也能大幅提升大模
型推理能力,开源纯强化学习推理模型DeepSeek-R1-Zero


R1-Zero 能生成高质量的推理数据,包括大量长链式思维(Chain-of-Thought,CoT)示例,用于支持后续的SFT 阶段,如图7所示。更加详细介绍参考3.2节。


3.1.2 核心创新2:通用强化学习

第一阶段R1-Zero 虽然展现出惊人的推理能力提升,但是也出现了回复时语言混合,非推理任务回复效果差的问题,为了解决这些问题,DeepSeek提出通用强化学习训练框架。如图7所示,通用强化学习(General Reinforcement Learning)基于SFTcheckpoint,模型进行通用强化学习(RL)训练,优化其在推理任务和其他通用任务上的表现。更加详细介绍参考3.3节。

3.2 含R1-Zero 的中间推理模型训练过程

中间模型占据主要训练精力的阶段,实际上完全通过推理导向的强化学习直接训练而成,完全跳过了监督微调(SFT),如下图8所示,只在强化学习的冷启动阶段使用了SFT

大规模推理导向的强化学习训练,必不可少的就是推理数据,手动标注就太繁琐了,成本昂贵,所以DeepSeek 团队为了解决这个问题,训了一个R1-Zero 模型,这是核心创新。R1-Zero 完全跳过SFT(监督微调)阶段,直接使用强化学习训练,如下图9所示,基于V3,直接使用强化学习开训:

这样做竟然达到了惊人的、意想不到的效果,推理超越OpenAI O1,如下图10所示,蓝线表示单次推理(pass@1)的准确率,红线表示16 次推理取一致性结果(cons@16)的准确率,可以看出一致性推理提高了最终性能。虚线代表OpenAI O1 的基准表现,图中可以看到DeepSeek-R1-Zero 的性能逐步接近甚至超越了OpenAI O1.

中间模型虽然推理能力很强,但存在可读性和多任务能力不足的问题,所以
才有了第二个创新。

3.3 通用强化学习训练过程

最终偏好调整(Preference Tuning),如下图11所示。通用强化学习训练过程后,使得R1 不仅在推理任务中表现卓越,同时在非推理任务中也表现出色。但由于其能力拓展至非推理类应用,因此在这些应用中引入了帮助性(helpfulness)和安全性(safety)奖励模型(类似于Llama 模型),以优化与这些应用相关的提示处理能力。
DeepSeek-R1 是训练流程的终点,结合了R1-Zero 的推理能力和通用强化学习的任务适应能力,成为一个兼具强推理和通用能力的高效AI 模型。

3.4 总结DeepSeek-R1

中间推理模型生成:通过推理导向的强化学习(Reasoning-Oriented RL),直接生成高质量的推理数据(CoT 示例),减少人工标注依赖。通用强化学习优化:基于帮助性和安全性奖励模型,优化推理与非推理任务表现,构建通用性强的模型。最终,DeepSeek-R1 将R1-Zero 的推理能力与通用强化学习的适应能力相结合,成为一个兼具强推理能力和任务广泛适应性的高效AI 模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/14378.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

自动驾驶---聊聊传统规控和端到端

1 背景 在自动驾驶领域中,端到端模型的兴起确实对传统的规划控制方法(笔者并不同意网上以Rule-Base称呼传统规控,传统的规控其实也使用了很多优化算法和博弈算法)产生了挑战,但这就意味着传统规控方法就完全没有应用了…

【如何掌握CSP-J 信奥赛中的深搜算法】

CSP-J 信奥赛中的深搜(深度优先搜索)算法是一个重要知识点,以下是一些学习深搜算法的建议: 理解基础概念 定义与原理:深度优先搜索是一种用于遍历或搜索图、树等数据结构的算法。它从起始节点开始,沿着一条…

使用redis实现 令牌桶算法 漏桶算法

流量控制算法,用于限制请求的速率。 可以应对缓存雪崩 令牌桶算法 核心思想是: 有一个固定容量的桶,里面存放着令牌(token)。每过一定时间(如 1 秒),桶中会自动增加一定数量的令牌…

LIMO:少即是多的推理

25年2月来自上海交大、SII 和 GAIR 的论文“LIMO: Less is More for Reasoning”。 一个挑战是在大语言模型(LLM)中的复杂推理。虽然传统观点认为复杂的推理任务需要大量的训练数据(通常超过 100,000 个示例),但本文展…

C++,设计模式,【单例模式】

文章目录 一、模式定义与核心价值二、模式结构解析三、关键实现技术演进1. 基础版(非线程安全)2. 线程安全版(双重检查锁)3. 现代C++实现(C++11起)四、实战案例:全局日志管理器五、模式优缺点深度分析✅ 核心优势⚠️ 潜在缺陷六、典型应用场景七、高级实现技巧1. 模板化…

Mysql基于binlog主从同步配置

主配置: 修改配置文件:/etc/my.cnf 添加server-id1 重启MySQL服务:systemctl restart mysqld 创建用户并授权: mysql> create user rep192.168.79.% identified with mysql_native_password by 123456; Query OK, 0 rows aff…

postman使用简介

在使用非关系数据库,与远端数据库交互时,需要在本地测试程序逻辑。借助postman查询数据。 1、开启本地数据库 绑定资源中,有如下应用程序,双击后可开启数据库服务 2、使用postman 下载后可以打开界面,可以填入远端数…

什么是三层交换技术?与二层有什么区别?

什么是三层交换技术?让你的网络飞起来! 一. 什么是三层交换技术?二. 工作原理三. 优点四. 应用场景五. 总结 前言 点个免费的赞和关注,有错误的地方请指出,看个人主页有惊喜。 作者:神的孩子都在歌唱 大家好…

amis组件crud使用踩坑

crud注意 过滤条件参数同步地址栏 默认 CRUD 会将过滤条件参数同步至浏览器地址栏中,比如搜索条件、当前页数,这也做的目的是刷新页面的时候还能进入之前的分页。 但也会导致地址栏中的参数数据合并到顶层的数据链中,例如:自动…

Baklib重塑内容中台智能推荐系统提高服务质量的策略和实操

内容概要 随着信息技术的飞速发展,企业在内容管理和用户体验方面面临越来越多的挑战。在这个大背景下,内容中台的智能化推荐系统应运而生,Baklib作为一个突出的工具,为企业提供了解决方案。Baklib 是什么类型的工具,它…

浅谈 HashMap 的扩容过程和 put 过程

这是在基于 JDK 1.8 之后的源码进行的浅谈 简介: 在 JDK 8 中,HashMap 由 “数组 链表 红黑树” 组成。链表过长会影响查询性能,而红黑树搜索的时间复杂度是 O(logn),而链表则是O(n),JDK 8 对数据结构进行了进一步的…

Unity-Mirror网络框架-从入门到精通之Discovery示例

文章目录 前言Discovery示例NetworkDiscoveryNetworkDiscoveryHUDServerRequestServerResponse最后前言 在现代游戏开发中,网络功能日益成为提升游戏体验的关键组成部分。本系列文章将为读者提供对Mirror网络框架的深入了解,涵盖从基础到高级的多个主题。Mirror是一个用于Un…

25/2/7 <机器人基础> 牛顿-欧拉递推公式,开闭环

牛顿-欧拉递推公式是用于计算刚体动力学中,刚体的角速度和角加速度的递推关系。这个公式是牛顿第二定律和欧拉旋转定理的结合,适用于描述刚体在空间中的旋转运动。 对于一个刚体,设其在某时刻的角速度为 ω,角加速度为 α&#xf…

Qt实现简易视频播放器

使用Qt6实现简易音乐播放器,效果如下: github: Gabriel-gxb/VideoPlayer: qt6实现简易视频播放器 一、整体架构 该代码整体架构围绕着MainWindow类构建一个媒体播放器相关的应用程序。 主要组件 (一)界面组件&…

使用 JFreeChart 创建动态图表:从入门到实战

文章目录 前言一、JFreeChart 简介二、环境准备三、 创建第一个折线图四、自定义图表样式4.1 设置背景色4.2 设置折线颜色4.3 设置字体(解决中文乱码)4.4 设置横坐标的标签宽度和方向 五、导出图表六、实战:动态生成日报图表总结 前言 在数据…

Codeforces Round 940 (Div. 2) and CodeCraft-23(A-D)

题目链接:Dashboard - Codeforces Round 940 (Div. 2) and CodeCraft-23 - Codeforces A. Stickogon 思路 正多边形意味着要用相等的木棍,相等的木棍最少需要3根才能组成正三角,我们把相等的数的数量除3加起来 代码 void solve(){int n;…

C++开发(软件开发)常见面试题

目录 1、C里指针和数组的区别 2、C中空指针请使用nullptr不要使用NULL 3、http/https区别和头部结构? 4、有了mac地址为什么还要ip地址?ip地址的作用 5、有了路由器为什么还要交换机? 6、面向对象三大特性 7、友元函数 8、大端小端 …

常用数据结构之String字符串

字符串 在Java编程语言中,字符可以使用基本数据类型char来保存,在 Java 中字符串属于对象,Java 提供了 String 类来创建和操作字符串。 操作字符串常用的有三种类:String、StringBuilder、StringBuffer 接下来看看这三类常见用…

wordpressAI工具,已接入Deepseek 支持自动生成文章、生成图片、生成长尾关键词、前端AI窗口互动、批量采集等

基于关键词或现有内容生成SEO优化的文章,支持多种AI服务(如OpenAI、百度文心一言、智谱AI等),并提供定时任务、内容采集、关键词生成等功能。 核心功能 文章生成 关键词生成:根据输入的关键词生成高质量文章。 内容…

Vite 为什么快,是怎么打包的

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…