leetCode 188.买卖股票的最佳时机 IV 动态规划 + 状态压缩

给你一个整数数组 prices 和一个整数 k ,其中 prices[i] 是某支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。也就是说,你最多可以买 k 次,卖 k 次。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。

示例 2:

输入:k = 2, prices = [3,2,6,5,0,3]
输出:7
解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

 >>思路和分析

这道题目是 的进阶版,这里要求至多有k次交易

>>动规五部曲

1.确定dp数组以及下标的含义

一天 一共有 j 个 状态 ,dp[i][j] 中 i 表示 第 i 天,j 为[0 - 2*k] 个状态,dp[i][j]表示第 i 天状态 j所剩最大现金

  • 0.没有操作(其实也可以不设置这个状态)
  • 1.第一次持有股票
  • 2.第一次不持有股票
  • 3.第二次持有股票
  • 4.第二次不持有股票
  • ...

"持有" : 不代表就是当天"买入"!可能昨天就买入了,今天保持有的状态

  • ① 我们可以发现,除了0以外,偶数就是不持有,奇数就是持有
  • ② 题目要求是至多有k笔交易,那么j的范围就定义为 2*k+1就可以
vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));

2.确定递推公式 

 同理类比剩下的状态,代码如下:

for (int j = 0; j < 2 * k - 1; j += 2) {dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}

推导思路:

-----------------------------------------------------------
第 i 天 的五种状态
dp[i][0] 不操作dp[i][1] 第一天持有股票时剩下的最大金钱
dp[i][1]         dp[i-1][1]dp[i-1][0] - prices[i]dp[i][2] 第一天不持有股票时剩下的最大金钱
dp[i][2]         dp[i-1][2]dp[i-1][1] + prices[i]dp[i][3] 第二天持有股票时剩下的最大金钱
dp[i][3]         dp[i-1][3]dp[i-1][2] - prices[i]
dp[i][4] 第二天不持有股票时剩下的最大金钱
dp[i][4]         dp[i-1][4]dp[i-1][3] + prices[i]-----------------------------------------------------------
dp[i][j+1]       dp[i-1][j+1]dp[i-1][j] - prices[i]dp[i][j+2]       dp[i-1][j+2]dp[i-1][j+1] + prices[i]dp[i][j+1] = max(dp[i-1][j+1],dp[i-1][j] - prices[i]);
dp[i][j+2] = max(dp[i-1][j+2],dp[i-1][j+1] + prices[i]);
-----------------------------------------------------------

 3.dp数组初始化

dp[0][0] = 0;
dp[0][1] = -prices[0];
dp[0][2] = 0;
dp[0][3] = -prices[0];
dp[0][4] = 0;
...

同理推出dp[0][j]当 j 为奇数时都初始化为 -prices[0]。代码如下:

for (int j = 1; j < 2 * k; j += 2) {dp[0][j] = -prices[0];
}

4.确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历因为dp[i],依靠dp[i - 1]的数值。

5.举例推导dp数组

(1)以输入[1,2,3,4,5],k = 2为例

(2)以输入[3,3,5,0,0,3,1,4],k = 2为例

最后一次卖出,一定是利润最大的,dp[prices.size() - 1][2 * k]即红色部分就是最后求解。 

class Solution {
public:int maxProfit(int k, vector<int>& prices) {if (prices.size() == 0) return 0;vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));for (int j = 1; j < 2 * k; j += 2) {dp[0][j] = -prices[0];}for (int i = 1;i < prices.size(); i++) {for (int j = 0; j < 2 * k - 1; j += 2) {dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);}}return dp[prices.size() - 1][2 * k];}
};
  • 时间复杂度: O(n * k),其中 n 为 prices 的长度
  • 空间复杂度: O(n * k)

>>状态压缩

class Solution {
public:// 状态压缩int maxProfit(int k, vector<int>& prices) {if (prices.size() == 0) return 0;int len = prices.size();vector<int>dp(2 * k + 1,0);for(int j = 1;j < 2 * k;j += 2) {dp[j] = -prices[0];}for(int i=1;i<len;i++) {for(int j=0;j < 2*k-1;j += 2) {dp[j+1] = max(dp[j+1],dp[j] - prices[i]);dp[j+2] = max(dp[j+2],dp[j+1] + prices[i]);}}return dp[2*k];}
};
  • 时间复杂度: O(n * k),其中 n 为 prices 的长度
  • 空间复杂度: O(k)

参考和推荐文章、视频

动态规划来决定最佳时机,至多可以买卖K次!| LeetCode:188.买卖股票最佳时机4_哔哩哔哩_bilibili

代码随想录 (programmercarl.com) 

来自代码随想录课堂截图:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/145209.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ElasticSearch - 基于 JavaRestClient 查询文档(match、精确、复合查询,以及排序、分页、高亮)

目录 一、基于 JavaRestClient 查询文档 1.1、查询 API 演示 1.1.1、查询基本框架 DSL 请求的对应格式 响应的解析 1.1.2、全文检索查询 1.1.3、精确查询 1.1.4、复合查询 1.1.5、排序和分页 1.1.6、高亮 一、基于 JavaRestClient 查询文档 1.1、查询 API 演示 1.1.…

FPGA 图像缩放 千兆网 UDP 网络视频传输,基于RTL8211 PHY实现,提供工程和QT上位机源码加技术支持

目录 1、前言版本更新说明免责声明 2、相关方案推荐UDP视频传输--无缩放FPGA图像缩放方案我这里已有的以太网方案 3、设计思路框架视频源选择ADV7611 解码芯片配置及采集动态彩条跨时钟FIFO图像缩放模块详解设计框图代码框图2种插值算法的整合与选择 UDP协议栈UDP视频数据组包U…

数据库存储引擎和数据类型详细介绍

目录 一、数据库存储引擎&#xff08;了解&#xff09;1.了解MySQL体系结构2.存储引擎&#xff08;了解&#xff09;2.1.存储引擎的介绍2.2.存储引擎分类2.3.如何选择引擎&#xff1f; 3.事务控制语言(TCL)事务的四个特性(ACID) 二、数据类型&#xff08;了解&#xff09;1.整型…

【Vue.js】使用Element中的Mock.js搭建首页导航左侧菜单---【超高级教学】

一&#xff0c;Mock.js 1.1 认识Mock.js Mock.js是一个用于前端开发中生成随机数据、模拟接口响应的 JavaScript 库。模拟数据的生成器&#xff0c;用来帮助前端调试开发、进行前后端的原型分离以及用来提高自动化测试效率 总结来说&#xff0c;Element中的Mock.js是一个用于…

龙迅LT9611UXC 2PORT MIPICSI/DSI转HDMI(2.0)转换器+音频,内置MCU

龙迅LT9611UXC 1.描述&#xff1a; LT9611UXC是一个高性能的MIPI DSI/CSI到HDMI2.0转换器。MIPI DSI/CSI输入具有可配置的单 端口或双端口&#xff0c;1高速时钟通道和1~4高速数据通道&#xff0c;最大2Gbps/通道&#xff0c;可支持高达16Gbps的总带 宽。LT9611UXC支持突发…

7、Docker网络

docker网络模式能干嘛&#xff1f; 容器间的互联和通信以及端口映射 容器IP变动时候可以通过服务名直接网络通信而不受到影响 docker 网络模式采用的是桥接模式&#xff0c;当我们创建了一个容器后docker网络就会帮我们创建一个虚拟网卡&#xff0c;这个虚拟网卡和我们的容器网…

Appium混合页面点击方法tap的使用

原生应用开发&#xff0c;是在Android、IOS等移动平台上利用官方提供的开发语言、开发类库、开发工具进行App开发&#xff1b;HTML5&#xff08;h5&#xff09;应用开发&#xff0c;是利用Web技术进行的App开发。目前&#xff0c;市面上很多app都是原生和h5混合开发&#xff0c…

C理解(四):链表

本文主要探讨单链表与双链表相关知识。 linux内核链表(include/linux/list.h) 内核链表中纯链表封装,纯链表的各种操作函数&#xff08;节点创建、插入、删除、遍历&#xff09;,纯链表内嵌在驱动结构体中,实现驱动的创建、插入、删除、遍历等 单链表 单链表链表头插…

FileManager/本地文件增删改查, Cache/图像缓存处理 的操作

1. FileManager 本地文件管理器&#xff0c;增删改查文件 1.1 实现 // 本地文件管理器 class LocalFileManager{// 单例模式static let instance LocalFileManager()let folderName "MyApp_Images"init() {createFolderIfNeeded()}// 创建特定应用的文件夹func cr…

【Java 进阶篇】MySQL 数据控制语言(DCL):管理用户权限

MySQL 是一个强大的关系型数据库管理系统&#xff0c;提供了丰富的功能和选项来管理数据库和用户。数据库管理员&#xff08;DBA&#xff09;通常使用数据控制语言&#xff08;Data Control Language&#xff0c;简称 DCL&#xff09;来管理用户的权限和访问。 本文将详细介绍…

uni-app 之 短信验证码登录

uni-app 之 短信验证码登录 image.png image.png <template><view style"width: 100%; display: flex; flex-direction:column; align-items:center;"><view style"width: 300px; margin-top: 100px;"><!-- // --><!-- 1&#…

JUnit介绍

JUnit是用于编写和运行可重复的自动化测试的开源测试框架&#xff0c; 这样可以保证我们的代码按预期工作。JUnit可广泛用于工业和作为支架(从命令行)或IDE(如Eclipse)内单独的Java程序。 JUnit提供&#xff1a; 断言测试预期结果。 测试功能共享通用的测试数据。 测试套件轻…

新闻报道的未来:自动化新闻生成与爬虫技术

概述 自动化新闻生成是一种利用自然语言处理和机器学习技术&#xff0c;从结构化数据中提取信息并生成新闻文章的方法。它可以实现大规模、高效、多样的新闻内容生产。然而&#xff0c;要实现自动化新闻生成&#xff0c;首先需要获取可靠的数据源。这就需要使用爬虫技术&#…

【AI视野·今日NLP 自然语言处理论文速览 第四十四期】Fri, 29 Sep 2023

AI视野今日CS.NLP 自然语言处理论文速览 Fri, 29 Sep 2023 Totally 45 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers MindShift: Leveraging Large Language Models for Mental-States-Based Problematic Smartphone Use Interve…

Source Insight 工具栏图标功能介绍

这篇文章并不介绍 Source Insight 的具体使用方法&#xff0c;这类教程网上有很多&#xff0c;这里只分析 Souce Insight 工具栏图标的功能。 文章目录 Source Insight 简介Souce Insight 工具栏文件操作新建&#xff08;CtrlN&#xff09;打开&#xff08;CtrlO&#xff09;保…

自学WEB后端02-基于Express框架完成一个交互留言板!

提示&#xff1a; 浏览器V8是JavaScript的前端运行环境 Node.js 是JavaScript 的后端运行环境 Node.js 中无法调用 DOM 和 BOM等浏览器内置 API 这个作业案例包含2部分内容&#xff0c; 第一部分是前端 前端完成界面内容CSS框架 第二部分是后端 完成用户留言存储&#xf…

overleaf杂谈-Springer文献格式问题

目录 overleaf写作问题记录1.Latex中的%问题&#xff08;文本变成灰色&#xff09;2.Springer文献格式问题2.1 新建reference.bib2.2 谷歌学术搜索文章并引用2.3 复制BibTex2.4 复制进reference.bib2.5 在sn-article.tex的\end{document}前添加语句2.6 引用文献2.7 Springer模板…

NLP 03(LSTM)

一、LSTM LSTM (Long Short-Term Memory) 也称长短时记忆结构,它是传统RNN的变体,与经典RNN相比&#xff1a; 能够有效捕捉长序列之间的语义关联缓解梯度消失或爆炸现象 LSTM的结构更复杂,它的核心结构可以分为四个部分去解析: 遗忘门、输入门、细胞状态、输出门 LSTM内部结构…

Android 使用Kotlin封装RecyclerView

文章目录 1.概述2.运行效果图3.代码实现3.1 扩展RecyclerView 3.2 扩展Adapter3.3 RecyclerView装饰绘制3.3.1 以图片实现分割线3.3.2 画网格线3.3.3空白的分割线3.3.4 不同方向上的分割线 3.4 使用方法 1.概述 在一个开源项目上看到了一个Android Kotlin版的RecyclerView封装…

Backblaze发布2023中期SSD故障数据质量报告

作为一家在2021年在美国纳斯达克上市的云端备份公司&#xff0c;Backblaze一直保持着对外定期发布HDD和SSD的故障率稳定性质量报告&#xff0c;给大家提供了一份真实应用场景下的稳定性分析参考数据。 本文我们主要看下Backblaze最新发布的2023中期SSD相关故障稳定性数据报告。…