Python异步框架大战:FastAPI、Sanic、Tornado VS Go 的 Gin

一、前言

异步编程在构建高性能 Web 应用中起着关键作用,而 FastAPI、Sanic、Tornado 都声称具有卓越的性能。本文将通过性能压测对这些框架与Go的Gin框架进行全面对比,揭示它们之间的差异。

原文:Python异步框架大战:FastAPI、Sanic、Tornado VS Go 的 Gin

二、环境准备

系统环境配置

编程语言

语言版本官网/Github
Python3.10.12https://www.python.org/
Go1.20.5https://go.dev/

压测工具

工具介绍官网/Github
abApache的压力测试工具,使用简单https://httpd.apache.org/docs/2.4/programs/ab.html
wrk高性能多线程压力测试工具https://github.com/wg/wrk
JMeter功能强大的压力/负载测试工具https://github.com/apache/jmeter

这里选择 wrk 工具进行压测,mac 安装直接通过brew快速安装

brew install wrk

window安装可能要依赖它的子系统才方便安装,或者换成其他的压测工具例如JMeter。

web框架

框架介绍压测版本官网/Github
FastAPI基于Python的高性能web框架0.103.1https://fastapi.tiangolo.com/
SanicPython的异步web服务器框架23.6.0https://sanic.dev/zh/
TornadoPython的非阻塞式web框架6.3.3https://www.tornadoweb.org/en/stable/
GinGo语言的web框架1.9.1https://gin-gonic.com/
Fibertodotodohttps://gofiber.io/
Flasktodotodohttps://github.com/pallets/flask
Djangotodotodohttps://www.djangoproject.com/

数据库配置

数据库名介绍压测版本依赖库
MySQL关系型数据库8.0sqlalchemy+aiomysql
RedisNoSQL数据库7.2aioredis

三、wrk 工具 http压测

FastAPI

普通http请求压测

依赖安装

pip install fastapi==0.103.1
pip install uvicorn==0.23.2

编写测试路由

from fastapi import FastAPIapp = FastAPI(summary="fastapi性能测试")@app.get(path="/http/fastapi/test")
async def fastapi_test():return {"code": 0, "message": "fastapi_http_test", "data": {}}

Uvicorn 运行,这里是起四个进程运行部署

uvicorn fastapi_test:app --log-level critical --port 8000 --workers 4

wrk压测

开20个线程,建立500个连接,持续请求30s

wrk -t20 -d30s -c500 http://127.0.0.1:8000/http/fastapi/test

压测结果

~ wrk -t20 -d30s -c500 http://127.0.0.1:8000/http/fastapi/testRunning 30s test @ http://127.0.0.1:8000/http/fastapi/test20 threads and 500 connectionsThread Stats   Avg      Stdev     Max   +/- StdevLatency     3.06ms    2.89ms  36.65ms   85.34%Req/Sec     3.85k     3.15k   41.59k    70.05%2298746 requests in 30.11s, 383.64MB readSocket errors: connect 267, read 100, write 0, timeout 0Requests/sec:  76357.51
Transfer/sec:     12.74MB

Thread Stats 这里是 20、30个压测线程的平均结果指标

  • 平均延迟(Avg Latency):每个线程的平均响应延迟
  • 标准差(Stdev Latency):每个线程延迟的标准差
  • 最大延迟(Max Latency):每个线程遇到的最大延迟
  • 延迟分布(+/- Stdev Latency):每个线程延迟分布情况
  • 每秒请求数(Req/Sec):每个线程每秒完成的请求数
  • 请求数分布(+/- Stdev Req/Sec):每个线程请求数的分布情况

Socket errors: connect 267, read 100, write 0, timeout 0,是压测过程中socket的错误统计

  • connect:连接错误,表示在压测过程中,总共有 267 次连接异常
  • read:读取错误,表示有 100 次读取数据异常
  • write:写入错误,表示有0次写入异常
  • timeout:超时错误,表示有0次超时

MySQL数据查询请求压测

这里在简单试下数据库查询时候的情况

首先先补充下项目依赖

pip install hui-tools[db-orm, db-redis]==0.2.0

hui-tools是我自己开发的一个工具库,欢迎大家一起来贡献。https://github.com/HuiDBK/py-tools

#!/usr/bin/python3
# -*- coding: utf-8 -*-
# @Author: Hui
# @Desc: { fastapi性能测试 }
# @Date: 2023/09/10 12:24
import uvicorn
from fastapi import FastAPI
from py_tools.connections.db.mysql import SQLAlchemyManager, DBManagerapp = FastAPI(summary="fastapi性能测试")async def init_orm():db_client = SQLAlchemyManager(host="127.0.0.1",port=3306,user="root",password="123456",db_name="house_rental")db_client.init_mysql_engine()DBManager.init_db_client(db_client)@app.on_event("startup")
async def startup_event():"""项目启动时准备环境"""await init_orm()@app.get(path="/http/fastapi/mysql/test")
async def fastapi_mysql_query_test():sql = "select id, username, role from user_basic where username='hui'"ret = await DBManager().run_sql(sql)column_names = [desc[0] for desc in ret.cursor.description]result_tuple = ret.fetchone()user_info = dict(zip(column_names, result_tuple))return {"code": 0, "message": "fastapi_http_test", "data": {**user_info}}

wrk压测

wrk -t20 -d30s -c500 http://127.0.0.1:8000/http/fastapi/mysql/test
~ wrk -t20 -d30s -c500 http://127.0.0.1:8000/http/fastapi/mysql/testRunning 30s test @ http://127.0.0.1:8000/http/fastapi/mysql/test20 threads and 500 connectionsThread Stats   Avg      Stdev     Max   +/- StdevLatency    38.81ms   19.35ms 226.42ms   76.86%Req/Sec   317.65    227.19   848.00     57.21%180255 requests in 30.09s, 36.95MB readSocket errors: connect 267, read 239, write 0, timeout 0Non-2xx or 3xx responses: 140Requests/sec:   5989.59
Transfer/sec:      1.23MB

可以发现就加入一个简单的数据库查询,QPS从 76357.51 降到 5989.59 足足降了有10倍多,其实是单机数据库处理不过来太多请求,并发的瓶颈是在数据库,可以尝试加个redis缓存对比MySQL来说并发提升了多少。

Redis缓存查询压测

#!/usr/bin/python3
# -*- coding: utf-8 -*-
# @Author: Hui
# @Desc: { fastapi性能测试 }
# @Date: 2023/09/10 12:24
import json
from datetime import timedeltaimport uvicorn
from fastapi import FastAPI
from py_tools.connections.db.mysql import SQLAlchemyManager, DBManager
from py_tools.connections.db.redis_client import RedisManagerapp = FastAPI(summary="fastapi性能测试")async def init_orm():db_client = SQLAlchemyManager(host="127.0.0.1",port=3306,user="root",password="123456",db_name="house_rental")db_client.init_mysql_engine()DBManager.init_db_client(db_client)async def init_redis():RedisManager.init_redis_client(async_client=True,host="127.0.0.1",port=6379,db=0,)@app.on_event("startup")
async def startup_event():"""项目启动时准备环境"""await init_orm()await init_redis()@app.get(path="/http/fastapi/redis/{username}")
async def fastapi_redis_query_test(username: str):# 先判断缓存有没有user_info = await RedisManager.client.get(name=username)if user_info:user_info = json.loads(user_info)return {"code": 0, "message": "fastapi_redis_test", "data": {**user_info}}sql = f"select id, username, role from user_basic where username='{username}'"ret = await DBManager().run_sql(sql)column_names = [desc[0] for desc in ret.cursor.description]result_tuple = ret.fetchone()user_info = dict(zip(column_names, result_tuple))# 存入redis缓存中, 3minawait RedisManager.client.set(name=user_info.get("username"),value=json.dumps(user_info),ex=timedelta(minutes=3))return {"code": 0, "message": "fastapi_redis_test", "data": {**user_info}}if __name__ == '__main__':uvicorn.run(app)

运行

wrk -t20 -d30s -c500 http://127.0.0.1:8000/http/fastapi/redis/hui

结果

~ wrk -t20 -d30s -c500 http://127.0.0.1:8000/http/fastapi/redis/huiRunning 30s test @ http://127.0.0.1:8000/http/fastapi/redis/hui20 threads and 500 connectionsThread Stats   Avg      Stdev     Max   +/- StdevLatency     9.60ms    5.59ms 126.63ms   88.41%Req/Sec     1.22k     0.91k    3.45k    57.54%730083 requests in 30.10s, 149.70MB readSocket errors: connect 267, read 101, write 0, timeout 0Requests/sec:  24257.09
Transfer/sec:      4.97MB

缓存信息

添加了redis缓存,并发能力也提升了不少,因此在业务开发中一些查多改少的数据可以适当的做缓存。

压测结论

压测类型测试时长线程数连接数请求总数QPS平均延迟最大延迟总流量吞吐量/s
普通请求30s20500229874676357.513.06ms36.65ms383.64MB12.74MB
MySQL查询30s205007300835989.5938.81ms226.42ms36.95MB1.23MB
Redis缓存30s2050073008324257.099.60ms126.63ms149.70MB4.97MB

给 mysql 查询加了个 redis 缓存 qps 提升了 3倍多,对于一些查多改少的数据,根据业务设置适当的缓存可以大大提升系统的吞吐能力。其他框架我就直接上代码测,就不一一赘述了,直接看结果指标。

Sanic

压测方式都是一样的我就不像fastapi一样的一个一个写了,直接写全部压测然后看结果

环境安装

pip install sanic==23.6.0
pip install hui-tools'[db-orm, db-redis]'==0.2.0

编写测试路由

#!/usr/bin/python3
# -*- coding: utf-8 -*-
# @Author: Hui
# @Desc: { sanic性能测试 }
# @Date: 2023/09/10 12:24
import json
from datetime import timedeltafrom py_tools.connections.db.mysql import SQLAlchemyManager, DBManager
from py_tools.connections.db.redis_client import RedisManager
from sanic import Sanic
from sanic.response import json as sanic_jsonapp = Sanic("sanic_test")async def init_orm():db_client = SQLAlchemyManager(host="127.0.0.1",port=3306,user="root",password="123456",db_name="house_rental")db_client.init_mysql_engine()DBManager.init_db_client(db_client)async def init_redis():RedisManager.init_redis_client(async_client=True,host="127.0.0.1",port=6379,db=0,)@app.listener('before_server_start')
async def server_start_event(app, loop):await init_orm()await init_redis()@app.get(uri="/http/sanic/test")
async def fastapi_test(req):return sanic_json({"code": 0, "message": "sanic_http_test", "data": {}})@app.get(uri="/http/sanic/mysql/test")
async def sanic_myql_query_test(req):sql = "select id, username, role from user_basic where username='hui'"ret = await DBManager().run_sql(sql)column_names = [desc[0] for desc in ret.cursor.description]result_tuple = ret.fetchone()user_info = dict(zip(column_names, result_tuple))return sanic_json({"code": 0, "message": "sanic_mysql_test", "data": {**user_info}})@app.get(uri="/http/sanic/redis/<username>")
async def sanic_redis_query_test(req, username: str):# 先判断缓存有没有user_info = await RedisManager.client.get(name=username)if user_info:user_info = json.loads(user_info)return sanic_json({"code": 0, "message": "sanic_redis_test", "data": {**user_info}})sql = f"select id, username, role from user_basic where username='{username}'"ret = await DBManager().run_sql(sql)column_names = [desc[0] for desc in ret.cursor.description]result_tuple = ret.fetchone()user_info = dict(zip(column_names, result_tuple))# 存入redis缓存中, 3minawait RedisManager.client.set(name=user_info.get("username"),value=json.dumps(user_info),ex=timedelta(minutes=3))return sanic_json({"code": 0, "message": "sanic_redis_test", "data": {**user_info}})def main():app.run()if __name__ == '__main__':# sanic sanic_test.app -p 8001 -w 4 --access-log=Falsemain()

运行

Sanic 内置了一个生产web服务器,可以直接使用

sanic python.sanic_test.app -p 8001 -w 4 --access-log=False

普通http请求压测

同样是起了四个进程看看性能如何

wrk -t20 -d30s -c500 http://127.0.0.1:8001/http/sanic/test

压测结果

~ wrk -t20 -d30s -c500 http://127.0.0.1:8001/http/sanic/testRunning 30s test @ http://127.0.0.1:8001/http/sanic/test20 threads and 500 connectionsThread Stats   Avg      Stdev     Max   +/- StdevLatency     1.93ms    2.20ms  61.89ms   91.96%Req/Sec     6.10k     3.80k   27.08k    69.37%3651099 requests in 30.10s, 497.92MB readSocket errors: connect 267, read 163, write 0, timeout 0Requests/sec: 121286.47
Transfer/sec:     16.54MB

Sanic 果然性能很强,在python中估计数一数二了。

mysql数据查询请求压测

运行

wrk -t20 -d30s -c500 http://127.0.0.1:8001/http/sanic/mysql/test

结果

~ wrk -t20 -d30s -c500 http://127.0.0.1:8001/http/sanic/mysql/testRunning 30s test @ http://127.0.0.1:8001/http/sanic/mysql/test20 threads and 500 connectionsThread Stats   Avg      Stdev     Max   +/- StdevLatency    35.22ms   21.75ms 264.37ms   78.52%Req/Sec   333.14    230.95     1.05k    68.99%198925 requests in 30.10s, 34.72MB readSocket errors: connect 267, read 146, write 0, timeout 0Requests/sec:   6609.65
Transfer/sec:      1.15MB

Redis缓存查询压测

运行

wrk -t20 -d30s -c500 http://127.0.0.1:8001/http/sanic/redis/hui

结果

~ wrk -t20 -d30s -c500 http://127.0.0.1:8001/http/sanic/redis/huiRunning 30s test @ http://127.0.0.1:8001/http/sanic/redis/hui20 threads and 500 connectionsThread Stats   Avg      Stdev     Max   +/- StdevLatency     6.91ms    4.13ms 217.47ms   95.62%Req/Sec     1.71k     0.88k    4.28k    68.05%1022884 requests in 30.09s, 178.52MB readSocket errors: connect 267, read 163, write 0, timeout 0Requests/sec:  33997.96
Transfer/sec:      5.93MB

压测结论

压测类型测试时长线程数连接数请求总数QPS平均延迟最大延迟总流量吞吐量/s
普通请求30s205003651099121286.471.93ms61.89ms497.92MB16.54MB
MySQL查询30s205001989256609.6535.22ms264.37ms34.72MB1.15MB
Redis缓存30s20500102288433997.966.91ms217.47ms178.52MB5.93MB

Tornado

环境安装

pip install tornado==6.3.3
pip install gunicorn==21.2.0
pip install hui-tools[db-orm, db-redis]==0.2.0

编写测试路由

#!/usr/bin/python3
# -*- coding: utf-8 -*-
# @Author: Hui
# @Desc: { tornado 性能测试 }
# @Date: 2023/09/20 22:42
import asyncio
from datetime import timedelta
import json
import tornado.web
import tornado.ioloop
from tornado.httpserver import HTTPServer
from py_tools.connections.db.mysql import SQLAlchemyManager, DBManager
from py_tools.connections.db.redis_client import RedisManagerclass TornadoBaseHandler(tornado.web.RequestHandler):passclass TornadoTestHandler(TornadoBaseHandler):async def get(self):self.write({"code": 0, "message": "tornado_http_test", "data": {}})class TornadoMySQLTestHandler(TornadoBaseHandler):async def get(self):sql = "select id, username, role from user_basic where username='hui'"ret = await DBManager().run_sql(sql)column_names = [desc[0] for desc in ret.cursor.description]result_tuple = ret.fetchone()user_info = dict(zip(column_names, result_tuple))self.write({"code": 0, "message": "tornado_mysql_test", "data": {**user_info}})class TornadoRedisTestHandler(TornadoBaseHandler):async def get(self, username):user_info = await RedisManager.client.get(name=username)if user_info:user_info = json.loads(user_info)self.write({"code": 0, "message": "tornado_redis_test", "data": {**user_info}})returnsql = f"select id, username, role from user_basic where username='{username}'"ret = await DBManager().run_sql(sql)column_names = [desc[0] for desc in ret.cursor.description]result_tuple = ret.fetchone()user_info = dict(zip(column_names, result_tuple))# 存入redis缓存中, 3minawait RedisManager.client.set(name=user_info.get("username"),value=json.dumps(user_info),ex=timedelta(minutes=3),)self.write({"code": 0, "message": "tornado_redis_test", "data": {**user_info}})def init_orm():db_client = SQLAlchemyManager(host="127.0.0.1",port=3306,user="root",password="123456",db_name="house_rental",)db_client.init_mysql_engine()DBManager.init_db_client(db_client)def init_redis():RedisManager.init_redis_client(async_client=True,host="127.0.0.1",port=6379,db=0,)def init_setup():init_orm()init_redis()def make_app():init_setup()return tornado.web.Application([(r"/http/tornado/test", TornadoTestHandler),(r"/http/tornado/mysql/test", TornadoMySQLTestHandler),(r"/http/tornado/redis/(.*)", TornadoRedisTestHandler),])app = make_app()async def main():# init_setup()# app = make_app()server = HTTPServer(app)server.bind(8002)# server.start(4) # start 4 worker# app.listen(8002)await asyncio.Event().wait()if __name__ == "__main__":# gunicorn -k tornado -w=4 -b=127.0.0.1:8002 python.tornado_test:appasyncio.run(main())

运行tornado服务

gunicorn -k tornado -w=4 -b=127.0.0.1:8002 python.tornado_test:app

wrk 压测

wrk -t20 -d30s -c500 http://127.0.0.1:8002/http/tornado/testwrk -t20 -d30s -c500 http://127.0.0.1:8002/http/tornado/mysql/testwrk -t20 -d30s -c500 http://127.0.0.1:8002/http/tornado/redis/hui

结果

~ wrk -t20 -d30s -c500 http:// 127.0.0.1 : 8002 /http/tornado/test
Running 30s test @ http://127.0.0.1:8002/http/tornado/test20 threads and 500 connectionsThread Stats   Avg      Stdev     Max   +/- StdevLatency     6.54ms    1.92ms  34.75ms   63.85%Req/Sec     1.79k     1.07k    3.83k    56.23%1068205 requests in 30.07s, 280.15MB readSocket errors: connect 267, read 98, write 0, timeout 0Requests/sec:  35525.38
Transfer/sec:      9.32MB➜  ~ wrk -t20 -d30s -c500 http:// 127.0.0.1 : 8002 /http/tornado/mysql/test
Running 30s test @ http://127.0.0.1:8002/http/tornado/mysql/test20 threads and 500 connectionsThread Stats   Avg      Stdev     Max   +/- StdevLatency    41.29ms   16.51ms 250.81ms   71.45%Req/Sec   283.47    188.81     0.95k    65.31%169471 requests in 30.09s, 51.88MB readSocket errors: connect 267, read 105, write 0, timeout 0Requests/sec:   5631.76
Transfer/sec:      1.72MB➜  ~ wrk -t20 -d30s -c500 http:// 127.0.0.1 : 8002 /http/tornado/redis/hui
Running 30s test @ http://127.0.0.1:8002/http/tornado/redis/hui20 threads and 500 connectionsThread Stats   Avg      Stdev     Max   +/- StdevLatency    11.69ms    3.83ms 125.75ms   78.27%Req/Sec     1.00k   537.85     2.20k    64.34%599840 requests in 30.07s, 183.63MB readSocket errors: connect 267, read 97, write 0, timeout 0Non-2xx or 3xx responses: 2Requests/sec:  19947.28
Transfer/sec:      6.11MB

Gin

环境安装

go get "github.com/gin-gonic/gin"
go get "github.com/go-redis/redis"
go get "gorm.io/driver/mysql"
go get "gorm.io/gorm"

代码编写

package mainimport ("encoding/json""time""github.com/gin-gonic/gin""github.com/go-redis/redis""gorm.io/driver/mysql""gorm.io/gorm""gorm.io/gorm/logger"
)var (db          *gorm.DBredisClient *redis.Client
)type UserBasic struct {Id       int    `json:"id"`Username string `json:"username"`Role     string `json:"role"`
}func (UserBasic) TableName() string {return "user_basic"
}func initDB() *gorm.DB {var err errordb, err = gorm.Open(mysql.Open("root:123456@/house_rental"), &gorm.Config{// 将LogMode设置为logger.Silent以禁用日志打印Logger: logger.Default.LogMode(logger.Silent),})if err != nil {panic("failed to connect database")}sqlDB, err := db.DB()// SetMaxIdleConns sets the maximum number of connections in the idle connection pool.sqlDB.SetMaxIdleConns(10)// SetMaxOpenConns sets the maximum number of open connections to the database.sqlDB.SetMaxOpenConns(30)// SetConnMaxLifetime sets the maximum amount of time a connection may be reused.sqlDB.SetConnMaxLifetime(time.Hour)return db
}func initRedis() *redis.Client {redisClient = redis.NewClient(&redis.Options{Addr: "localhost:6379",})return redisClient
}func jsonTestHandler(c *gin.Context) {c.JSON(200, gin.H{"code": 0, "message": "gin json", "data": make(map[string]any),})
}func mysqlQueryHandler(c *gin.Context) {// 查询语句var user UserBasicdb.First(&user, "username = ?", "hui")//fmt.Println(user)// 返回响应c.JSON(200, gin.H{"code":    0,"message": "go mysql test","data":    user,})}func cacheQueryHandler(c *gin.Context) {// 从Redis中获取缓存username := "hui" // 要查询的用户名cachedUser, err := redisClient.Get(username).Result()if err == nil {// 缓存存在,将缓存结果返回给客户端var user UserBasic_ = json.Unmarshal([]byte(cachedUser), &user)c.JSON(200, gin.H{"code":    0,"message": "gin redis test","data":    user,})return}// 缓存不存在,执行数据库查询var user UserBasicdb.First(&user, "username = ?", username)// 将查询结果保存到Redis缓存userJSON, _ := json.Marshal(user)redisClient.Set(username, userJSON, time.Minute*2)// 返回响应c.JSON(200, gin.H{"code":    0,"message": "gin redis test","data":    user,})
}func initDao() {initDB()initRedis()
}func main() {//r := gin.Default()r := gin.New()gin.SetMode(gin.ReleaseMode) // 生产模式initDao()r.GET("/http/gin/test", jsonTestHandler)r.GET("/http/gin/mysql/test", mysqlQueryHandler)r.GET("/http/gin/redis/test", cacheQueryHandler)r.Run("127.0.0.1:8003")
}

wrk 压测

wrk -t20 -d30s -c500 http: //127.0.0.1:8003/http/gin/testwrk -t20 -d30s -c500 http: //127.0.0.1:8003/http/gin/mysql/testwrk -t20 -d30s -c500 http: //127.0.0.1:8003/http/gin/redis/test

结果

~ wrk -t20 -d30s -c500 http:// 127.0.0.1 : 8003 /http/gin/test
Running 30s test @ http://127.0.0.1:8003/http/gin/test20 threads and 500 connectionsThread Stats   Avg      Stdev     Max   +/- StdevLatency     2.45ms    5.68ms 186.48ms   91.70%Req/Sec     6.36k     5.62k   53.15k    83.99%3787808 requests in 30.10s, 592.42MB readSocket errors: connect 267, read 95, write 0, timeout 0Requests/sec: 125855.41
Transfer/sec:     19.68MB➜  ~ wrk -t20 -d30s -c500 http:// 127.0.0.1 : 8003 /http/gin/mysql/test
Running 30s test @ http://127.0.0.1:8003/http/gin/mysql/test20 threads and 500 connectionsThread Stats   Avg      Stdev     Max   +/- StdevLatency    40.89ms   83.70ms   1.12s    90.99%Req/Sec   522.33    322.88     1.72k    64.84%308836 requests in 30.10s, 61.26MB readSocket errors: connect 267, read 100, write 0, timeout 0Requests/sec:  10260.63
Transfer/sec:      2.04MB
➜  ~~ wrk -t20 -d30s -c500 http:// 127.0.0.1 : 8003 /http/gin/redis/test
Running 30s test @ http://127.0.0.1:8003/http/gin/redis/test20 threads and 500 connectionsThread Stats   Avg      Stdev     Max   +/- StdevLatency     7.18ms    1.76ms  79.40ms   81.93%Req/Sec     1.63k     1.09k    4.34k    62.59%972272 requests in 30.10s, 193.79MB readSocket errors: connect 267, read 104, write 0, timeout 0Requests/sec:  32305.30
Transfer/sec:      6.44MB

四、总结

web框架压测类型测试时长线程数连接数请求总数QPS平均延迟最大延迟总流量吞吐量/s
FastAPI普通请求30s205002298746(229w)76357.51
(76k)
3.06ms36.65ms383.64MB12.74MB
MySQL查询30s20500180255
(18w)
5989.59
(5.9k)
38.81ms226.42ms36.95MB1.23MB
Redis缓存30s20500730083
(73w)
24257.09
(24k)
9.60ms126.63ms149.70MB4.97MB
Sanic普通请求30s205003651099(365w)121286.47(120k)1.93ms61.89ms497.92MB16.54MB
MySQL查询30s20500198925
(19w)
6609.65
(6k)
35.22ms264.37ms34.72MB1.15MB
Redis缓存30s205001022884(100w)33997.96
(33k)
6.91ms217.47ms178.52MB5.93MB
Tornado普通请求30s205001068205(106w)35525.38(35k)6.54ms34.75ms280.15MB9.32MB
MySQL查询30s20500169471
(16w)
5631.76
(5.6k)
41.29ms250.81ms51.88MB1.72MB
Redis缓存30s20500599840
(59w)
19947.28
(19k)
11.69ms125.75ms183.63MB6.11MB
Gin普通请求30s205003787808(378w)125855.41(125k)2.45ms186.48ms592.42MB19.68MB
MySQL查询30s20500308836
(30w)
10260.63
(10k)
40.89ms1.12s61.26MB2.04MB
Redis缓存30s20500972272
(97w)
32305.30(32k)7.18ms79.40ms193.79MB6.44MB

性能

从性能角度来看,各个Web框架的表现如下:

Gin > Sanic > FastAPI > Tornado

Gin:在普通请求方面表现最佳,具有最高的QPS和吞吐量。在MySQL查询中,性能很高,但最大延迟也相对较高。gin承受的并发请求最高有 1w qps,其他python框架都在5-6k qps,但gin的mysql查询请求最大延迟达到了1.12s, 虽然可以接受这么多并发请求,但单机mysql还是处理不过来。

还有非常重要的一点,cpython的多线程由于GIL原因不能充分利用多核CPU,故而都是通过开了四个进程来处理请求,资源开销远远大于go的gin,go底层的GMP的调度策略很强,天然支持并发。

注意:Python使用asyncio语法时切记不要使用同步IO操作不然会堵塞住主线程的事件loop,从而大大降低性能,如果没有异步库支持可以采用线程来处理同步IO。

综合评价

除了性能之外,还有其他因素需要考虑,例如框架的社区活跃性、生态系统、文档质量以及团队熟悉度等。这些因素也应该在选择Web框架时考虑。

最终的选择应该基于具体需求和项目要求。如果性能是最重要的因素之一,那么Sanic和go的一些框架可能是不错的选择。如果您更关注其他方面的因素,可以考虑框架的社区支持和适用性。我个人还是挺喜欢使用FastAPI。

五、测试源代码

https://github.com/HuiDBK/WebFrameworkPressureTest

Github上已经有其他语言的web框架的压测,感兴趣也可以去了解下: https://web-frameworks-benchmark.netlify.app/result

不知道为啥他们测试的python性能好低,可能异步没用对😄

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/145658.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【智能家居项目】裸机版本——项目介绍 | 输入子系统(按键) | 单元测试

&#x1f431;作者&#xff1a;一只大喵咪1201 &#x1f431;专栏&#xff1a;《智能家居项目》 &#x1f525;格言&#xff1a;你只管努力&#xff0c;剩下的交给时间&#xff01; 目录 &#x1f3c0;项目简介&#x1f3c0;输入子系统(按键)⚽应用层⚽设备层⚽ 内核层抽象层⚽…

每日一练-Q1-大数加法-20231001

目录 1.题目描述 2.输入描述 3.示例提示 4.问题分析 5.通过代码 1.题目描述 大数一直是一个c语言的一个难题。 现在我们需要你手动模拟出大数加法过程。 请你给出两个大整数加法结果。 2.输入描述 第一行输入整数n&#xff0c;第二行输入整数m。 (1<number<1e100)…

在nodejs中如何防止ssrf攻击

在nodejs中如何防止ssrf攻击 什么是ssrf攻击 ssrf&#xff08;server-side request forgery&#xff09;是服务器端请求伪造&#xff0c;指攻击者能够从易受攻击的Web应用程序发送精心设计的请求的对其他网站进行攻击。(利用一个可发起网络请求的服务当作跳板来攻击其他服务)…

10月1日作业

汇编指令合集 用select实现服务器并发代码 #include<myhead.h> #define IP "192.168.0.106" #define PORT 8888int main(int argc, const char *argv[]) {//新建套接字文件int sfd socket(AF_INET, SOCK_STREAM, 0);if(sfd < 0){ERR_MSG("socket&quo…

多线程学习笔记(一)

文章目录 1 线程基础知识复习2 CompletableFuture1、Future和Callable接口2、FutureTask3、对Future的改进4、案例精讲——电商5、常用方法6、CompetableFutureWithThreadPool【重要】 3 锁1、乐观锁和悲观锁2、synchronized 8锁案例3、公平锁和非公平锁4、可重入锁5、死锁及排…

web:[RoarCTF 2019]Easy Calc

题目 进入页面是一个计算器的页面 随便试了一下 查看源代码看看有什么有用的信息 访问一下这个calc.php 进行代码审计 <?php error_reporting(0); if(!isset($_GET[num])){show_source(__FILE__); }else{$str $_GET[num];$blacklist [ , \t, \r, \n,\, ", , \[, \]…

Win11下无法打开丛林之狐,提示未检测到DirectX 8.1

新装的win11系统&#xff0c;打开丛林之狐提示未检测到DirectX 8.1. 运行dxdiag检查DirectX版本&#xff1a; DX版本已经是12了&#xff1a; 最终参考了这篇文章解决了&#xff1a; 罪恶都市出现XX-directx version 8.1处理方法 - 知乎 控制面板 > 程序 > 启用或关闭Wi…

蜂蜜配送销售商城小程序的作用是什么

蜂蜜是农产品中重要的一个类目&#xff0c;其受众之广市场需求量大&#xff0c;但由于非人人必需品&#xff0c;因此传统线下门店经营也面临着痛点&#xff0c;线上入驻平台也有很多限制难以打造自有品牌&#xff0c;无法管理销售商品及会员、营销等&#xff0c;缺少自营渠道&a…

力扣 -- 718. 最长重复子数组

解题步骤&#xff1a; 参考代码&#xff1a; class Solution { public:int findLength(vector<int>& nums1, vector<int>& nums2) {int m nums1.size();int n nums2.size();//多开一行&#xff0c;多开一列vector<vector<int>> dp(m 1, ve…

【中秋国庆不断更】OpenHarmony多态样式stateStyles使用场景

Styles和Extend仅仅应用于静态页面的样式复用&#xff0c;stateStyles可以依据组件的内部状态的不同&#xff0c;快速设置不同样式。这就是我们本章要介绍的内容stateStyles&#xff08;又称为&#xff1a;多态样式&#xff09;。 概述 stateStyles是属性方法&#xff0c;可以根…

【数据库——MySQL】(13)过程式对象程序设计——存储函数、错误处理以及事务管理

目录 1. 存储函数2. 存储函数的应用3. 错误处理4. 抛出异常5. 事务处理6. 事务隔离级7. 应用实例参考书籍 1. 存储函数 要 创建 存储函数&#xff0c;需要用到 CREATE 语句&#xff1a; CREATE FUNCTION 存储函数名([参数名 类型, ...])RETURNS 类型[存储函数体]注意&#xff1…

【计算机网络】DNS原理介绍

文章目录 DNS提供的服务DNS的工作机理DNS查询过程DNS缓存 DNS记录和报文DNS记录DNS报文针对DNS服务的攻击 DNS提供的服务 DNS&#xff0c;即域名系统(Domain Name System) 提供的服务 一种实现从主机名到IP地址转换的目录服务&#xff0c;为Internet上的用户应用程序以及其他…

最快的包管理器--pnpm创建vue项目完整步骤

1.用npm全局安装pnpm npm install -g pnpm 2.在要创建vue项目的包下进入cmd&#xff0c;输入&#xff1a; pnpm create vue 3.输入项目名字&#xff0c;选择Router,Pinia,ESLint,Prettier之后点确定 4.cd到创建好的项目 &#xff0c;安装依赖 cd .\刚创建好的项目名称\ p…

Redis配置和优化

Redis配置和优化 一 、Redis介绍二、关系数据库和非关系数据库2.1、关系型数据库2.2、 非关系型数据库2.3、 非关系型数据库的产生背景2.4、 关系型数据库和非关系型数据库区别2.5、 总结 三、缓存概念3.1、系统缓存3.2、 缓存保存位置及分层结构3.2.1、DNS缓存3.2.2、 应用层缓…

笔试练习day01

目录 一、选择题 1、格式化输出 2、逻辑判断--短路原则 3、赋值语句 4、左移、异或 二、编程题 1、组队竞赛 2、删除公共字符 一、选择题 1、格式化输出 知识点&#xff1a;格式化输出&#xff0c;%m.ns 2、逻辑判断--短路原则 知识点&#xff1a; else和最近的if匹…

第一次作业题解

第一次作业题解 P5717 【深基3.习8】三角形分类 思路 考的是if()的使用,还要给三条边判断大小 判断优先级&#xff1a; 三角形&#xff1f;直角、钝角、锐角等腰等边 判断按题给顺序来 代码 #include <stdio.h> int main() {int a 0, b 0, c 0, x 0, y 0, z 0…

排序篇(二)----选择排序

排序篇(二)----选择排序 1.直接选择排序 基本思想&#xff1a; 每一次从待排序的数据元素中选出最小&#xff08;或最大&#xff09;的一个元素&#xff0c;存放在序列的起始位置&#xff0c;直到全部待排序的数据元素排完 。 直接选择排序: ​ 在元素集合array[i]–array[…

pytorch函数reshape()和view()的区别及张量连续性

目录 1.view() 2.reshape() 3.引用和副本&#xff1a; 4.区别 5.总结 在PyTorch中&#xff0c;tensor可以使用两种方法来改变其形状&#xff1a;view()和reshape()。这两种方法的作用是相当类似的&#xff0c;但是它们在实现上有一些细微的区别。 1.view() view()方法是…

C++指针常量,常量指针以及, 引用和指针的区别

const修饰指针有三种情况 1. const修饰指针 --- 常量指针 2. const修饰常量 --- 指针常量 3. const即修饰指针&#xff0c;又修饰常量 c int main() {int a 10;int b 10;//const修饰的是指针&#xff0c;常量指针&#xff0c;指针指向可以改&#xff0c;指针指向的值不…

分享10个必备的VS Code技巧和窍门,提高你的开发效率

目录 前言 1. 时间线视图&#xff1a;本地源代码控制 2. 自动保存&#xff1a;不再需要按Ctrl S 3. 使用命令面板进行任何操作 4、快速转到文件 5. 快速跳转指定行 6. 快速删除该行 7. 享受使用流畅的光标进行打字 8. 快速格式化代码 9. 使用多光标编辑功能节省时间…