【生物信息学】计算图网络中节点的中心性指标:聚集系数、介数中心性、度中心性

目录

一、实验介绍

二、实验环境

1. 配置虚拟环境

2. 库版本介绍

3. IDE

三、实验内容

0. 导入必要的工具

1. 生成邻接矩阵simulate_G:

2. 计算节点的聚集系数 CC(G):

3.计算节点的介数中心性 BC(G)

4. 计算节点的度中心性 DC(G)

5. 综合centrality(G)      

6. 代码整合


一、实验介绍

        本实验实现了计算图网络中节点的中心性指标,包括聚集系数、介数中心性、度中心性

二、实验环境

    本系列实验使用了PyTorch深度学习框架,相关操作如下(基于深度学习系列文章的环境):

1. 配置虚拟环境

深度学习系列文章的环境

conda create -n DL python=3.7 
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib
conda install scikit-learn

新增加

conda install pandas
conda install seaborn
conda install networkx
conda install statsmodels
pip install pyHSICLasso

注:本人的实验环境按照上述顺序安装各种库,若想尝试一起安装(天知道会不会出问题)

2. 库版本介绍

软件包本实验版本目前最新版
matplotlib3.5.33.8.0
numpy1.21.61.26.0
python3.7.16
scikit-learn0.22.11.3.0
torch1.8.1+cu1022.0.1
torchaudio0.8.12.0.2
torchvision0.9.1+cu1020.15.2

新增

networkx2.6.33.1
pandas1.2.32.1.1
pyHSICLasso1.4.21.4.2
seaborn0.12.20.13.0
statsmodels0.13.50.14.0

3. IDE

        建议使用Pycharm(其中,pyHSICLasso库在VScode出错,尚未找到解决办法……)

win11 安装 Anaconda(2022.10)+pycharm(2022.3/2023.1.4)+配置虚拟环境_QomolangmaH的博客-CSDN博客https://blog.csdn.net/m0_63834988/article/details/128693741https://blog.csdn.net/m0_63834988/article/details/128693741icon-default.png?t=N7T8https://blog.csdn.net/m0_63834988/article/details/128693741

三、实验内容

0. 导入必要的工具

import numpy as np
import networkx as nx
import matplotlib.pyplot as plt

1. 生成邻接矩阵simulate_G:

def simulate_G(d):B = np.random.binomial(1, 0.3, size=(d, d))return np.triu(B, 1) + np.triu(B, 1).T
  • 生成一个随机的邻接矩阵表示的图,其中节点数为 d。
    • 使用numpy 库的 random.binomial 函数生成一个具有一定概率连接的邻接矩阵
    • 通过 triu 函数提取出上三角部分(不包括对角线),然后与其转置相加,得到一个无向图的邻接矩阵。

  2. 计算节点的聚集系数 CC(G):

def CC(G):cc = {}# single_source_dijkstra_path_length 从点i到其他点的最短路径长度# nx.single_source_dijkstra_path(G_nx, i)for i in range(G.shape[0]):pre_num = 0for k, v in nx.single_source_dijkstra_path_length(G_nx, i).items():pre_num += vcc[len(cc)] = (G.shape[0] - 1) / pre_numreturn cc

        通过遍历图中的每个节点,使用 networkx 库的 single_source_dijkstra_path_length 函数计算该节点到其他节点的最短路径长度,并将这些路径长度求和。然后,通过计算 (节点总数 - 1) / 最短路径长度之和,得到该节点的聚集系数。

3. 计算节点的介数中心性 BC(G)

def BC(G):bc_res = {}bc = [0.] * G.shape[0]for i in range(G.shape[0]):for j in range(G.shape[0]):shortest_paths = list(nx.all_shortest_paths(G_nx, i, j))for v in shortest_paths:for pre in v[1:-1]:bc[pre] += 1. / len(shortest_paths)for i in range(G.shape[0]):bc_res[i] = bc[i] / ((G.shape[0] - 1) * (G.shape[0] - 2))return bc_res

        遍历图中的每对节点,使用 networkx 库的 all_shortest_paths 函数找到它们之间的所有最短路径,并对每条路径上的中间节点进行计数。然后,通过计算每个节点的介数值(即通过该节点的最短路径数除以所有最短路径数的总和),得到节点的介数中心性。

4. 计算节点的度中心性 DC(G)

def DC(G):dc_res = {}degree = np.sum(G, axis=1)dc = degree / (G.shape[0] - 1)for index, item in enumerate(dc):dc_res[index] = itemreturn dc_res

        计算节点的度中心性(degree centrality)。首先计算每个节点的度(与其相连的边的数量),然后将度除以节点总数减去 1,得到节点的度中心性。

5. 综合 centrality(G)      

def centrality(G):cc = CC(G)bc = BC(G)dc = DC(G)return dc, cc, bc

  

        这个函数是一个综合函数,用于计算节点的三种中心性指标:度中心性、聚集系数和介数中心性。它调用上述三个函数,并返回这些中心性指标的字典。

6. 代码整合

import numpy as np
import networkx as nx
import matplotlib.pyplot as pltdef simulate_G(d):B = np.random.binomial(1, 0.3, size=(d, d))return np.triu(B, 1) + np.triu(B, 1).Tdef CC(G):cc = {}# single_source_dijkstra_path_length 从点i到其他点的最短路径长度# nx.single_source_dijkstra_path(G_nx, i)for i in range(G.shape[0]):pre_num = 0for k, v in nx.single_source_dijkstra_path_length(G_nx, i).items():pre_num += vcc[len(cc)] = (G.shape[0] - 1) / pre_numreturn ccdef BC(G):bc_res = {}bc = [0.] * G.shape[0]for i in range(G.shape[0]):for j in range(G.shape[0]):shortest_paths = list(nx.all_shortest_paths(G_nx, i, j))for v in shortest_paths:for pre in v[1:-1]:bc[pre] += 1. / len(shortest_paths)for i in range(G.shape[0]):bc_res[i] = bc[i] / ((G.shape[0] - 1) * (G.shape[0] - 2))return bc_resdef DC(G):dc_res = {}degree = np.sum(G, axis=1)dc = degree / (G.shape[0] - 1)for index, item in enumerate(dc):dc_res[index] = itemreturn dc_resdef centrality(G):cc = CC(G)bc = BC(G)dc = DC(G)return dc, cc, bcif __name__ == '__main__':# np.random.seed(0)# G = simulate_G(8)G = np.array([[0, 1, 0, 1, 1],[1, 0, 1, 0, 0],[0, 1, 0, 0, 1],[1, 0, 0, 0, 1],[1, 0, 1, 1, 0]])G_nx = nx.from_numpy_matrix(G)nx.draw_kamada_kawai(G_nx, with_labels=True)plt.show()dc, cc, bc = centrality(G)print("dc_nx", nx.degree_centrality(G_nx))print("dc   ", dc)print("cc_nx", nx.closeness_centrality(G_nx))print("cc   ", cc)print("bc_nx", nx.betweenness_centrality(G_nx))print("bc   ", bc)

  

  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/146827.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于web的画作展示系统/作品展示平台

摘 要 网络的广泛应用给生活带来了十分的便利。所以把画作展示系统与现在网络相结合,利用JSP技术建设画作展示系统,实现画作展示系统的信息化。则对于进一步提高画作展示系统的发展,丰富画作展示系统经验能起到不少的促进作用。 画作展示系统…

NLP中token总结

Token 可以被理解为文本中的最小单位。在英文中,一个 token 可以是一个单词,也可以是一个标点符号。在中文中,通常以字或词作为 token。ChatGPT 将输入文本拆分成一个个 token,使模型能够对其进行处理和理解 在自然语言处理&#…

【QT】自定义组件ui类添加到主ui界面方法

1.添加自定义组件到项目中 add new选择如下 写好类方法,确定即可 2.将新创建的ui类加入到主ui界面 选中新创建ui类的父类空块,右键选择提升为 选择并添加新创建的类

asp.net core mvc 文件上传,下载,预览

//文件上传用到了IformFile接口 1.1文件上传视图 <form action"/stu/upload" method"post" enctype"multipart/form-data"><input type"file" name"img" /><input type"submit" value"上传&…

【通意千问】大模型GitHub开源工程学习笔记(2)--使用Qwen进行推理的示例代码解析,及transformers的库使用

使用Transformers来使用模型 如希望使用Qwen-chat进行推理,所需要写的只是如下所示的数行代码。请确保你使用的是最新代码,并指定正确的模型名称和路径,如Qwen/Qwen-7B-Chat和Qwen/Qwen-14B-Chat 这里给出了一段代码 from transformers import AutoModelForCausalLM, Aut…

多目标平衡优化器黏菌算法(MOEOSMA)求解CEC2020多模式多目标优化

多目标平衡优化器黏菌算法&#xff08;MOEOSMA&#xff09;比现有的多目标黏菌算法具有更好的优化性能。在MOEOSMA中&#xff0c;动态系数用于调整勘探和开采趋势。采用精英存档机制来促进算法的收敛性。使用拥挤距离法来保持Pareto前沿的分布。采用平衡池策略模拟黏菌的协同觅…

【深度学习实验】卷积神经网络(六):自定义卷积神经网络模型(VGG)实现图片多分类任务

目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入必要的工具包 1. 构建数据集&#xff08;CIFAR10Dataset&#xff09; a. read_csv_labels&#xff08;&#xff09; b. CIFAR10Dataset 2. 构建模型&#xff08;FeedForward&…

前端页面初步开发

<template><div><el-card class"box-card" style"height: 620px"><el-input v-model"query.name" style"width:200px" placeholder"请输入用户姓名"></el-input>&nbsp&nbsp&nbsp…

贪心找性质+dp表示+矩阵表示+线段树维护:CF573D

比较套路的题目 首先肯定贪心一波&#xff0c;两个都排序后尽量相连。我一开始猜最多跨1&#xff0c;但其实最多跨2&#xff0c;考虑3个人的情况&#xff1a; 我们发现第3个人没了&#xff0c;所以可以出现跨2的情况 然后直接上dp&#xff0c;由 i − 1 , i − 2 , i − 3 i…

input输入表头保存excel文件

input输入表头 input输入表头 &#xff08;input内除了/&#xff0c;空格 回车 标点符号等 全部作为单元格分隔符&#xff09;保存/storage/emulated/0/代码文件/ 没有就创建文件名命名方法&#xff1a;编号. 库 时间戳嗨&#xff01;听说你有个需求&#xff0c;想根据用户输入…

数码产品数码配件无线键盘等出口欧盟CE-RED认证测试办理

数码产品数码配件无线键盘CE-RED认证测试办理 无线产品CE-RED认证进入东欧市场规定&#xff1a; 在通信终端设备和无线产品在这些/地区合法销售之前&#xff0c;必须按照 RED 指令进行测试&#xff0c;并且还必须提供 CE 标志。无线远程控制产品必须符合 RED 指令的 REDEU 要…

2021-06-18 51蛋骗鸡实现流水灯累积点亮全亮后闪烁从头开始循环

缘由怎么在单片机上实现这个功能呢_有问必答-CSDN问答 #include "REG52.h" sbit K1 P1^5; sbit K2 P1^6; sbit K3 P1^7; sbit K4 P1^4; //sbit LED1P1^0; //sbit LED2P1^1; //sbit LED3P1^2; //sbit LED4P1^3; bit k1; unsigned char code SmZiFu[]{63,6,91,79,…

数字乡村包括哪些方面?数字乡村应用介绍

数字乡村是指利用物联网、数字化和智能化技术&#xff0c;借助现代数字智能产品、高效信息服务和物联网基础设施&#xff0c;以提高农村居民生活质量&#xff0c;助力拓展经济发展前景。 创建数字村庄有助于缩小城乡社区之间的差距&#xff0c;保障每个人都能平等地享受科技发展…

Observer

Observer 动机 在软件构建过程中&#xff0c;我们需要为某些对象建立一种“通知依赖关系”——一个对象&#xff08;目标对象&#xff09;的状态发生改变&#xff0c;所有的依赖对象&#xff08;观察者对象&#xff09;都将得到通知。如果这样的依赖关系过于紧密&#xff0c;…

在移动固态硬盘上安装Ubuntu系统和ROS2

目录 原视频准备烧录 原视频 b站鱼香ros 准备 1.在某宝上买一个usb移动固态硬盘或固态U盘&#xff0c;至少64G 2.下载鱼香ros烧录工具 下载第二个就行了&#xff0c;不然某网盘的速度下载全部要一天 下载后&#xff0c;选择FishROS2OS制作工具压缩包&#xff0c;进行解压…

国庆节看这里,有你意想不到的收货!(建议收藏)

计算机视觉研究院专栏 作者&#xff1a;Edison_G “国庆长假&#xff0c;每个人都安耐不住了&#xff0c;但是&#xff0c;在你静心、游玩的时候&#xff0c;还是可以阅读今天的分享&#xff0c;干货满满&#xff01; 公众号ID&#xff5c;ComputerVisionGzq 学习群&#xff5c…

【STM32】IAP升级03关闭总中断,检测栈顶指针

IAP升级方法 IAP升级时需要关闭总中断 TM32在使用时有时需要禁用全局中断&#xff0c;比如MCU在升级过程中需禁用外部中断&#xff0c;防止升级过程中外部中断触发导致升级失败。 ARM MDK中提供了如下两个接口来禁用和开启总中断&#xff1a; __disable_irq(); // 关闭总中…

【Django】4 Django模型

每个模型是一个Python 类&#xff0c;集成django.db.models.Modle类 该模型的每个属性表示一个数据库表字段 通过API 自动生成数据库访问 .../sign/modles.py 文件&#xff0c;通过模型完成表创建。 TypeError: ForeignKey.__init__() missing 1 required positional argumen…

leetcode-239-滑动窗口最大值

题意描述&#xff1a; 给你一个整数数组 nums&#xff0c;有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 返回 滑动窗口中的最大值 。 示例&#xff1a; 输入&#xff1a;nums [1,3,-1,…

聊聊常见的IO模型 BIO/NIO/AIO 、DIO、多路复用等IO模型

聊聊常见的IO模型 BIO/NIO/AIO/DIO、IO多路复用等IO模型 文章目录 一、前言1. 什么是IO模型2. 为什么需要IO模型 二、常见的IO模型1. 同步阻塞IO&#xff08;Blocking IO&#xff0c;BIO&#xff09;2. 同步非阻塞IO&#xff08;Non-blocking IO&#xff0c;NIO&#xff09;3.…