基于蜉蝣优化的BP神经网络(分类应用) - 附代码

基于蜉蝣优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于蜉蝣优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.蜉蝣优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 蜉蝣算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用蜉蝣算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.蜉蝣优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 蜉蝣算法应用

蜉蝣算法原理请参考:https://blog.csdn.net/u011835903/article/details/109253587

蜉蝣算法的参数设置为:

popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从蜉蝣算法的收敛曲线可以看到,整体误差是不断下降的,说明蜉蝣算法起到了优化的作用:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/147486.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AAD基础知识(identity/token/PRT)

简介 AAD(Azure Active Directory/Azure AD)是微软基于云身份验证和访问控制的解决方案,通过SSO登录其他o365应用(word/outlook/teams…) 微软在2023年7月把AAD重命名为Microsoft Entra ID,官网:https://www.microsoft.com/zh-cn/security/b…

【多任务案例:猫狗脸部定位与分类】

【猫狗脸部定位与识别】 1 引言2 损失函数3 The Oxford-IIIT Pet Dataset数据集4 数据预处理4 创建模型输入5 自定义数据集加载方式6 显示一批次数据7 创建定位模型8 模型训练9 绘制损失曲线10 模型保存与预测 1 引言 猫狗脸部定位与识别分为定位和识别,即定位猫狗…

通过 HelpLook ChatBot AI自动问答机器人降低客户服务成本

在当今竞争激烈的商业环境中,提供卓越的客户服务对于维持忠诚的客户群和推动业务增长至关重要。客户服务涵盖了公司与其客户之间的所有互动,包括解答问题、解决问题和提供支持。它在塑造客户对品牌的看法方面起着关键作用,并且可以显著影响他…

C语言判断语句

判断结构要求程序员指定一个或多个要评估或测试的条件,以及条件为真时要执行的语句(必需的)和条件为假时要执行的语句(可选的)。 C 语言把任何非零和非空的值假定为 true,把零或 null 假定为 false。 下面…

react create-react-app v5 从零搭建(使用 npm run eject)

前言: 好久没用 create-react-app做项目了,这次为了个h5项目,就几个页面,决定自己搭建一个(ps:mmp 好久没用,搭建的时候遇到一堆问题)。 我之前都是使用 umi 。后台管理系统的项目 使用 antd-…

DevExpress ChartControl 画间断线

效果如下: 解决办法:数据源间断位置加入double.NaN demo下载

动态链接那些事

1、为什么要动态链接 1.1 空间浪费 对于静态链接来说,在程序运行之前,会将程序所需的所有模块编译、链接成一个可执行文件。这种情况下,如果 Program1 和 Program2 都需要用到 Lib.o 模块,那么,内存中和磁盘中实际上就…

Sui第五轮资助: 17个项目共获105万美元资助金

近日,Sui基金会宣布17个项目获得了105万美元的资助,用于建设项目以推动Sui的采用和发展。要获得资助,项目必须提交详细的提案,说明构建的项目、预算明细、关键里程碑、团队经验,以及对Sui社区的预期贡献。了解更多Sui资…

Azure Arc 概要:功能、管理和应用场景详解,AZ900 考点示例

文章目录 本文大纲一、什么是 Azure Arc二、使用 Azure Arc 可以做什么操作三、使用 Azure Arc 可以管理什么资源3.1 如何使用Azure Arc与服务器? 四、Azure Arc 支持的主要场景五、在 AZ900 中的考点示例5.1 示例题 15.2 示例题 2 本文大纲 本文思维导图概述的主要内容&…

已解决 Bug——IndexError: index 3 is out of bounds for axis 0 with size 3问题

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页: 🐅🐾猫头虎的博客🎐《面试题大全专栏》 🦕 文章图文并茂&#x1f996…

软件工程与计算总结(二)软件工程的发展

本章开始介绍第二节内容,主要是一些历史性的东西~ 一.软件工程的发展脉络 1.基础环境因素的变化及其对软件工程的推动 抽象软件实体和虚拟计算机都是软件工程的基础环境因素,它们能从根本上影响软件工程的生产能力,而且是软件工程无法反向…

十四天学会C++之第三天(数组和字符串)

1. 数组的定义和初始化 数组是一种由相同数据类型的元素组成的集合,这些元素按照一定的顺序存储在连续的内存位置上。数组的大小在创建时是固定的,无法在运行时改变。 在C中,数组的定义和声明非常简单。定义一个数组: 数据类型…

vtk 动画入门 1 代码

实现效果如图&#xff1a; #include <vtkAutoInit.h> //VTK_MODULE_INIT(vtkRenderingOpenGL2); //VTK_MODULE_INIT(vtkInteractionStyle); VTK_MODULE_INIT(vtkRenderingOpenGL2); VTK_MODULE_INIT(vtkInteractionStyle); //VTK_MODULE_INIT(vtkRenderingFreeType); #in…

IDEA Rogstry中找不到compiler.automake.allow.when.app.running问题解决

网上大部分人教我们 先 File > Settings 然后 勾选 Build 下的 Compiler中的 Build project automatically 这些步骤都不会有问题 然后就会让我们 ctrl shift alt / 点 Rogstry 打开后 我人就麻了 根本没有什么 compiler.automake.allow.when.app.running 也不用慌 我们…

YTM32的电源管理与低功耗系统详解

YTM32的电源管理与低功耗系统详解 苏勇&#xff0c;2023年10月 文章目录 YTM32的电源管理与低功耗系统详解缘起原理与机制电源管理模型的功耗模式正常模式&#xff08;Normal&#xff09;休眠模式&#xff08;Sleep&#xff09;深度休眠模式&#xff08;DeepSleep&#xff09;…

大语言模型之十五-预训练和监督微调中文LLama-2

这篇博客是继《大语言模型之十二 SentencePiece扩充LLama2中文词汇》、《大语言模型之十三 LLama2中文推理》和《大语言模型之十四-PEFT的LoRA》 前面博客演示了中文词汇的扩充以及给予LoRA方法的预训练模型参数合并&#xff0c;并没有给出LoRA模型参数是如何训练得出的。 本篇…

WebSocket实战之六心跳重连机制

一、前言 WebSocket应用部署到生产环境&#xff0c;我们除了会碰到因为经过代理服务器无法连接的问题&#xff08;注&#xff1a;该问题可以通过搭建WSS来解决&#xff0c;具体配置请看 WebSocket实战之四WSS配置 &#xff09;&#xff0c;另外一个问题就是外网环境不稳定经常…

基本的五大排序算法

目录&#xff1a; 一&#xff0c;直接插入算法 二&#xff0c;希尔排序算法 三&#xff0c;选择排序 四&#xff0c;堆排序 五&#xff0c;冒泡排序算法 简介&#xff1a; 排序算法目前是我们最常用的算法之一&#xff0c;据研究表明&#xff0c;目前排序占用计算机CPU的时…

Linux环境下gdb调试方法与演示

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【Linux专栏】&#x1f388; 本专栏旨在分享学习Linux的一点学习心得&#xff0c;欢迎大家在评论区讨论&#x1f48c; 演示环境&#xff1…

OpenCV 14(角点特征Harris和Shi-Tomasi)

一、角点 角点是图像很重要的特征,对图像图形的理解和分析有很重要的作用。角点在三维场景重建运动估计&#xff0c;目标跟踪、目标识别、图像配准与匹配等计算机视觉领域起着非常重要的作用。在现实世界中&#xff0c;角点对应于物体的拐角&#xff0c;道路的十字路口、丁字路…