【Unet系列】

https://tianfeng.space/1947.html

前言概念

图像分割

分割任务就是在原始图像中逐像素的找到你需要的家伙!

img

语义分割

就是把每个像素都打上标签(这个像素点是人,树,背景等)

(语义分割只区分类别,不区分类别中具体单位)img

实例分割

实例分割不光要区别类别,还要区分类别中每一个个体

img

损失函数:

逐像素的交叉熵:还经常需要考虑样本均衡问题,交叉熵损失函数公式如下:

img

Focal loss:样本也由难易之分,就跟玩游戏一样,难度越高的BOSS奖励越高

img
Gamma通常设置为2,例如预测正样本概率0.95,如果预测正样本概率0.4, (相当于样本的难易权值)

img
(再结合样本数量的权值就是Focal Loss)

IOU计算

多分类任务时:iou_dog = 801 / true_dog + predict_dog - 801

img

MIOU指标:
MIOU就是计算所有类别的平均值,一般当作分割任务评估指标

Unet

整体结构:概述就是编码解码过程;简单但是很实用,应用广;起初是做医学方向,现在也是

img

Unet++

整体网络结构:特征融合,拼接更全面;其实跟densenet思想一致;把能拼能凑的特征全用上

Deep Supervision :多输出损失;由多个位置计算,再更新

容易剪枝:可以根据速度要求来快速完成剪枝;训练的时候同样会用到L4,效果还不错

img

U²net

代码 论文

听名字知道就是把Unet中每个stage再变成一个Unet,这样就嵌套了一个Unet变成U²net;

输出为解码器各个阶段输出再拼接,经过一次卷积输出

img

现有卷积块和我们提出的残差U形块RSU的说明:(a)普通卷积块PLN,(b)残差类块RES,(c)密集类块DSE,(d)启始类块INC和(e)我们的残差U型块RSU

img

残差块与我们的RSU的比较

img

就作者展示的效果而言,出奇的不错,有兴趣去代码界面看看,使用也很简单,下面展示一些

img

img

img

代码结构放最后;有兴趣看看

#U²net结构;387行forward开始
import torch
import torch.nn as nn
from torchvision import models
import torch.nn.functional as Fclass REBNCONV(nn.Module):def __init__(self,in_ch=3,out_ch=3,dirate=1):super(REBNCONV,self).__init__()self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate)self.bn_s1 = nn.BatchNorm2d(out_ch)self.relu_s1 = nn.ReLU(inplace=True)def forward(self,x):hx = xxout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))return xout## upsample tensor 'src' to have the same spatial size with tensor 'tar'
def _upsample_like(src,tar):src = F.upsample(src,size=tar.shape[2:],mode='bilinear')return src### RSU-7 ###
class RSU7(nn.Module):#UNet07DRES(nn.Module):def __init__(self, in_ch=3, mid_ch=12, out_ch=3):super(RSU7,self).__init__()self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)self.pool5 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=1)self.rebnconv7 = REBNCONV(mid_ch,mid_ch,dirate=2)self.rebnconv6d = REBNCONV(mid_ch*2,mid_ch,dirate=1)self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)def forward(self,x):print(x.shape)hx = xhxin = self.rebnconvin(hx)print(hxin.shape)hx1 = self.rebnconv1(hxin)print(hx1.shape)hx = self.pool1(hx1)print(hx.shape)hx2 = self.rebnconv2(hx)print(hx2.shape)hx = self.pool2(hx2)print(hx.shape)hx3 = self.rebnconv3(hx)print(hx3.shape)hx = self.pool3(hx3)print(hx.shape)hx4 = self.rebnconv4(hx)print(hx4.shape)hx = self.pool4(hx4)print(hx.shape)hx5 = self.rebnconv5(hx)print(hx5.shape)hx = self.pool5(hx5)print(hx.shape)hx6 = self.rebnconv6(hx)print(hx6.shape)hx7 = self.rebnconv7(hx6)print(hx7.shape)hx6d =  self.rebnconv6d(torch.cat((hx7,hx6),1))print(hx6d.shape)hx6dup = _upsample_like(hx6d,hx5)print(hx6dup.shape)hx5d =  self.rebnconv5d(torch.cat((hx6dup,hx5),1))print(hx5d.shape)hx5dup = _upsample_like(hx5d,hx4)print(hx5dup.shape)hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))print(hx4d.shape)hx4dup = _upsample_like(hx4d,hx3)print(hx4dup.shape)hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))print(hx3d.shape)hx3dup = _upsample_like(hx3d,hx2)print(hx3dup.shape)hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))print(hx2d.shape)hx2dup = _upsample_like(hx2d,hx1)print(hx2dup.shape)hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))print(hx1d.shape)return hx1d + hxin### RSU-6 ###
class RSU6(nn.Module):#UNet06DRES(nn.Module):def __init__(self, in_ch=3, mid_ch=12, out_ch=3):super(RSU6,self).__init__()self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=2)self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)def forward(self,x):hx = xhxin = self.rebnconvin(hx)hx1 = self.rebnconv1(hxin)hx = self.pool1(hx1)hx2 = self.rebnconv2(hx)hx = self.pool2(hx2)hx3 = self.rebnconv3(hx)hx = self.pool3(hx3)hx4 = self.rebnconv4(hx)hx = self.pool4(hx4)hx5 = self.rebnconv5(hx)hx6 = self.rebnconv6(hx5)hx5d =  self.rebnconv5d(torch.cat((hx6,hx5),1))hx5dup = _upsample_like(hx5d,hx4)hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))hx4dup = _upsample_like(hx4d,hx3)hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))hx3dup = _upsample_like(hx3d,hx2)hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))hx2dup = _upsample_like(hx2d,hx1)hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))return hx1d + hxin### RSU-5 ###
class RSU5(nn.Module):#UNet05DRES(nn.Module):def __init__(self, in_ch=3, mid_ch=12, out_ch=3):super(RSU5,self).__init__()self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=2)self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)def forward(self,x):hx = xhxin = self.rebnconvin(hx)hx1 = self.rebnconv1(hxin)hx = self.pool1(hx1)hx2 = self.rebnconv2(hx)hx = self.pool2(hx2)hx3 = self.rebnconv3(hx)hx = self.pool3(hx3)hx4 = self.rebnconv4(hx)hx5 = self.rebnconv5(hx4)hx4d = self.rebnconv4d(torch.cat((hx5,hx4),1))hx4dup = _upsample_like(hx4d,hx3)hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))hx3dup = _upsample_like(hx3d,hx2)hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))hx2dup = _upsample_like(hx2d,hx1)hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))return hx1d + hxin### RSU-4 ###
class RSU4(nn.Module):#UNet04DRES(nn.Module):def __init__(self, in_ch=3, mid_ch=12, out_ch=3):super(RSU4,self).__init__()self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=2)self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)def forward(self,x):hx = xhxin = self.rebnconvin(hx)hx1 = self.rebnconv1(hxin)hx = self.pool1(hx1)hx2 = self.rebnconv2(hx)hx = self.pool2(hx2)hx3 = self.rebnconv3(hx)hx4 = self.rebnconv4(hx3)hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))hx3dup = _upsample_like(hx3d,hx2)hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))hx2dup = _upsample_like(hx2d,hx1)hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))return hx1d + hxin### RSU-4F ###
class RSU4F(nn.Module):#UNet04FRES(nn.Module):def __init__(self, in_ch=3, mid_ch=12, out_ch=3):super(RSU4F,self).__init__()self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=2)self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=4)self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=8)self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=4)self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=2)self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)def forward(self,x):hx = xhxin = self.rebnconvin(hx)print(hxin.shape)hx1 = self.rebnconv1(hxin)print(hx1.shape)hx2 = self.rebnconv2(hx1)print(hx2.shape)hx3 = self.rebnconv3(hx2)print(hx3.shape)hx4 = self.rebnconv4(hx3)print(hx4.shape)hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))print(hx3d.shape)hx2d = self.rebnconv2d(torch.cat((hx3d,hx2),1))print(hx2d.shape)hx1d = self.rebnconv1d(torch.cat((hx2d,hx1),1))print(hx1d.shape)return hx1d + hxin##### U^2-Net ####
class U2NET(nn.Module):def __init__(self,in_ch=3,out_ch=1):super(U2NET,self).__init__()self.stage1 = RSU7(in_ch,32,64)self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.stage2 = RSU6(64,32,128)self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.stage3 = RSU5(128,64,256)self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.stage4 = RSU4(256,128,512)self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.stage5 = RSU4F(512,256,512)self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.stage6 = RSU4F(512,256,512)# decoderself.stage5d = RSU4F(1024,256,512)self.stage4d = RSU4(1024,128,256)self.stage3d = RSU5(512,64,128)self.stage2d = RSU6(256,32,64)self.stage1d = RSU7(128,16,64)self.side1 = nn.Conv2d(64,out_ch,3,padding=1)self.side2 = nn.Conv2d(64,out_ch,3,padding=1)self.side3 = nn.Conv2d(128,out_ch,3,padding=1)self.side4 = nn.Conv2d(256,out_ch,3,padding=1)self.side5 = nn.Conv2d(512,out_ch,3,padding=1)self.side6 = nn.Conv2d(512,out_ch,3,padding=1)self.outconv = nn.Conv2d(6,out_ch,1)def forward(self,x):print(x.shape)hx = x#stage 1hx1 = self.stage1(hx)print(hx1.shape)hx = self.pool12(hx1)print(hx.shape)#stage 2hx2 = self.stage2(hx)print(hx2.shape)hx = self.pool23(hx2)print(hx.shape)#stage 3hx3 = self.stage3(hx)print(hx3.shape)hx = self.pool34(hx3)print(hx.shape)#stage 4hx4 = self.stage4(hx)print(hx4.shape)hx = self.pool45(hx4)print(hx.shape)#stage 5hx5 = self.stage5(hx)print(hx5.shape)hx = self.pool56(hx5)print(hx.shape)#stage 6hx6 = self.stage6(hx)print(hx6.shape)hx6up = _upsample_like(hx6,hx5)print(hx6up.shape)#-------------------- decoder --------------------hx5d = self.stage5d(torch.cat((hx6up,hx5),1))print(hx5d.shape)hx5dup = _upsample_like(hx5d,hx4)print(hx5dup.shape)hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))print(hx4d.shape)hx4dup = _upsample_like(hx4d,hx3)print(hx4dup.shape)hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))print(hx3d.shape)hx3dup = _upsample_like(hx3d,hx2)print(hx3dup.shape)hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))print(hx2d.shape)hx2dup = _upsample_like(hx2d,hx1)print(hx2dup.shape)hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))print(hx1d.shape)#side outputd1 = self.side1(hx1d)print(d1.shape)d2 = self.side2(hx2d)print(d2.shape)d2 = _upsample_like(d2,d1)print(d2.shape)d3 = self.side3(hx3d)print(d3.shape)d3 = _upsample_like(d3,d1)print(d3.shape)d4 = self.side4(hx4d)print(d4.shape)d4 = _upsample_like(d4,d1)print(d4.shape)d5 = self.side5(hx5d)print(d5.shape)d5 = _upsample_like(d5,d1)print(d5.shape)d6 = self.side6(hx6)print(d6.shape)d6 = _upsample_like(d6,d1)print(d6.shape)d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))print(d0.shape)return F.sigmoid(d0), F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)### U^2-Net small ###
class U2NETP(nn.Module):def __init__(self,in_ch=3,out_ch=1):super(U2NETP,self).__init__()self.stage1 = RSU7(in_ch,16,64)self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.stage2 = RSU6(64,16,64)self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.stage3 = RSU5(64,16,64)self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.stage4 = RSU4(64,16,64)self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.stage5 = RSU4F(64,16,64)self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)self.stage6 = RSU4F(64,16,64)# decoderself.stage5d = RSU4F(128,16,64)self.stage4d = RSU4(128,16,64)self.stage3d = RSU5(128,16,64)self.stage2d = RSU6(128,16,64)self.stage1d = RSU7(128,16,64)self.side1 = nn.Conv2d(64,out_ch,3,padding=1)self.side2 = nn.Conv2d(64,out_ch,3,padding=1)self.side3 = nn.Conv2d(64,out_ch,3,padding=1)self.side4 = nn.Conv2d(64,out_ch,3,padding=1)self.side5 = nn.Conv2d(64,out_ch,3,padding=1)self.side6 = nn.Conv2d(64,out_ch,3,padding=1)self.outconv = nn.Conv2d(6,out_ch,1)def forward(self,x):hx = x#stage 1hx1 = self.stage1(hx)hx = self.pool12(hx1)#stage 2hx2 = self.stage2(hx)hx = self.pool23(hx2)#stage 3hx3 = self.stage3(hx)hx = self.pool34(hx3)#stage 4hx4 = self.stage4(hx)hx = self.pool45(hx4)#stage 5hx5 = self.stage5(hx)hx = self.pool56(hx5)#stage 6hx6 = self.stage6(hx)hx6up = _upsample_like(hx6,hx5)#decoderhx5d = self.stage5d(torch.cat((hx6up,hx5),1))hx5dup = _upsample_like(hx5d,hx4)hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))hx4dup = _upsample_like(hx4d,hx3)hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))hx3dup = _upsample_like(hx3d,hx2)hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))hx2dup = _upsample_like(hx2d,hx1)hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))#side outputd1 = self.side1(hx1d)d2 = self.side2(hx2d)d2 = _upsample_like(d2,d1)d3 = self.side3(hx3d)d3 = _upsample_like(d3,d1)d4 = self.side4(hx4d)d4 = _upsample_like(d4,d1)d5 = self.side5(hx5d)d5 = _upsample_like(d5,d1)d6 = self.side6(hx6)d6 = _upsample_like(d6,d1)d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))return F.sigmoid(d0), F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/148785.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL:温备份和恢复-mysqldump (4)

介绍 温备:同样是在数据库运行的时候进行备份的,但对当前数据库的操作会产生影响。(只可以读操作,不可以写操作) 温备份的优点: 1.可在表空间或数据文件级备份,备份时间短。 2.备份时数据库依然…

十四天学会C++之第一天(入门和基本语法)

C的起源和历史 C诞生于20世纪80年代初,它的创造者是计算机科学家Bjarne Stroustrup。当时,Stroustrup在贝尔实验室工作,他希望为C语言添加一些功能,以便更好地支持系统开发。这个愿望促使他创建了C。 C的名字来源于它的基因&…

Mongodb学习

一、初步了解 1.1 Mongodb 是什么 MongoDB 是一个基于分布式文件存储的数据库,官方地址 https://www.mongodb.com/ 1.2 数据库是什么 数据库(DataBase)是按照数据结构来组织、存储和管理数据的 应用程序 1.3 数据库的作用 数据库的主要…

微服务技术栈-初识Docker

文章目录 前言一、Docker概念二、安装Docker三、Docker服务命令四、Docker镜像和容器Docker镜像相关命令Docker容器相关命令 总结 前言 docker技术风靡全球,它的功能就是将linux容器中的应用代码打包,可以轻松的在服务器之间进行迁移。docker运行程序的过程就是去仓…

深入浅出,SpringBoot整合Quartz实现定时任务与Redis健康检测(一)

目录 前言 环境配置 Quartz 什么是Quartz? 应用场景 核心组件 Job JobDetail Trigger CronTrigger SimpleTrigger Scheduler 任务存储 RAM JDBC 导入依赖 定时任务 销量统计 Redis检测 使用 注意事项 前言 在悦享校园1.0中引入了Quartz框架实现…

ARTS 第一期

Algorithm 本周刷的算法是:57. 插入区间 这道算法对我来说很有意义,为什么? 因为这一道算法让我意识到我之前写的算法都是「混」过来的,理解根本不到位,怎么解决?重复的刷之前写过的重要的算法&#xff0…

Docker---cgroups资源限制

目录 一、cpu资源控制 1、 设置cpu使用率上限 2、设置cpu资源占用比(设置多个容器时才有效) 3、设置容器绑定指定的CPU 三、内存资源控制 四、磁盘IO配额控制 1、限制Block IO 2、限制bps和iops进行限制 一、cpu资源控制 cgroups是一个非常强大的…

ili9431液晶 tft_espi图形库演示 时钟、天气、滚动、气象图标

米思齐tft_spi模块库演示程序。心知天气、阿里云时钟、WiFi信号强度检测、1分钟滚屏、更新天气时间为15分钟、加入天气图标。更新天气次数。断网检测 。此程序为tft_eSPI图形库演示、如感觉好可以自行优化。 ili9431tft_espi库是用于ESP32和ESP8266芯片的TFT LCD驱动程序库&am…

JMeter性能分析实战一:日常登录接口

负载测试 日常需求:负载测试! 对于桥的负载测试:我给你20t的一排车辆,看你能不能撑得住20t! 对于系统的负载测试: 逐步增加负载,便于问题的发现和定位,不要操之过急。逐步增加负载…

若依不分离+Thymeleaf select选中多个回显

项目中遇到的场景&#xff0c;亲测实用 表单添加时&#xff0c;select选中多个&#xff0c;编辑表单时&#xff0c;select多选回显&#xff0c;如图 代码&#xff1a; // 新增代码 <label class"col-sm-3 control-label">通道&#xff1a;</label><…

人工智能:定义未来,揭开历史神秘面纱,展望无限可能!

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是尘缘&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f449;点击这里&#xff0c;就可以查看我的主页啦&#xff01;&#x1f447;&#x…

PHP 选课管理系统mysql数据库web结构apache计算机软件工程网页wamp

一、源码特点 PHP 选课管理系统是一套完善的web设计系统&#xff0c;对理解php编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。 php 选课管理系统 代码 https://download.csdn.net/download/qq_41221322/88389656 二…

ES查询数据的时报错:circuit_breaking_exception[[parent] Data too large

ES配置的官方网站&#xff1a;https://www.elastic.co/guide/en/elasticsearch/reference/7.2/circuit-breaker.html 报错&#xff1a; circuit_breaking_exception[[parent] Data too large, data for [<transport_request>] would be [12318476937/11.2gb], which is…

Unity基于种子与地块概率的开放世界2D地图生成

public class BuildingGen : MonoBehaviour {public int[] Building;//存储要生成的地块代码public int[] Probability;//存储概率public double seed;public int width 100;public int height 100;public float noiseScale 0.1f; //噪声缩放倍数private int[,] frequencyM…

WOL唤醒配置(以太网、PHY、MAC)

目录 wol 以太网 MAC PHY RMII 通信配置 总结 wol Wake-on-LAN简称WOL&#xff0c;WOL&#xff08;网络唤醒&#xff09; 是一种标准网络协议&#xff0c;它的功效在于让已经进入休眠状态或关机状态的计算机&#xff0c;透过局域网&#xff08;多半为以太网&#xff…

Linux YUM源(本地/网络源)配置详解

目录 一、挂载 二、建立本地源 配置详解&#xff1a; 三、建立网络源 配置详解&#xff1a; 四、验证 一、挂载 ——将光盘挂载到 /mnt ——挂载光盘时要保证虚拟机光盘处于连接状态 命令&#xff1a;[rootlocalhost mnt]# mount /dev/sr0 /mnt # 此时还未挂载 [rootlo…

二、互联网技术——网络协议

文章目录 一、OSI与TCP/IP参考模型二、TCP/IP参考模型各层功能三、TCP/IP参考模型与对应协议四、常用协议与功能五、常用协议端口 一、OSI与TCP/IP参考模型 二、TCP/IP参考模型各层功能 三、TCP/IP参考模型与对应协议 例题&#xff1a;TCP/IP模型包含四个层次&#xff0c;由上至…

1300*D. Alice, Bob and Candies(模拟)

Problem - 1352D - Codeforces 解析&#xff1a; 模拟即可。 #include<bits/stdc.h> using namespace std; #define int long long const int N2e55; int t,n,a[N]; signed main(){scanf("%lld",&t);while(t--){scanf("%lld",&n);for(int i…

数据结构和算法——数据结构

数据结构&#xff1a; 线性结构&#xff1a; 顺序存储方式&#xff0c;顺序表 常见的顺序存储结构有&#xff1a;数组、队列、链表、栈 链式存储方式&#xff0c;链表 队列&#xff1a; 队列可以使用数组结构或者链表结构来存储&#xff0c;先入先出&#xff0c;后进后出。…

性能测试工具 - LoadRunner

什么是性能测试&#xff1f; 性能测试就是测试人员利用性能测试工具模拟系统在不同情况下的性能指标是否正常。 性能测试工具 - LoadRunner 接下来介绍LoadRunner的作用和使用。 LoadRunner 就是一个很常见的性能测试工具&#xff0c;它有三个部分组成&#xff1a; 这三个组…