目标检测算法改进系列之Backbone替换为FocalNet

FocalNet

近些年,Transformers在自然语言处理、图像分类、目标检测和图像分割上均取得了较大的成功,归根结底是自注意力(SA :self-attention)起到了关键性的作用,因此能够支持输入信息的全局交互。但是由于视觉tokens的大量存在,自注意力的计算复杂度高,尤其是在高分辨的输入时,因此针对该缺陷,论文《Focal Modulation Networks》提出了FocalNet网络。

论文地址:Focal Modulation Networks

原理:使用新提出的Focal Modulation替代之前的SA自注意力模块,解耦聚合和单个查询过程,先将查询周围的上下文信息进行聚合,再根据聚合信息获取查询结果。如下图所示,图中红色表示query token。对比来看,Window-wise Self-Attention (SA)利用周围的token(橙色)来捕获空间上下文信息;在此基础上,Focal Attention扩大了感受野,还可以使用更远的summarized tokens(蓝色);而Focal Modulation更为强大,先利用诸如depth-wise convolution的方式将不同粒度级别的空间上下文编码为summarized tokens (橙色、绿色和蓝色),再根据查询内容,选择性的将这些summarized tokens融合为query token。而本文新提出的方式便是进行轻量化,将聚合和单个查询进行解耦,减少计算量。

在前两者中,绿色和紫色箭头分别代表注意力交互和基于查询的聚合,但是都存在一个缺陷,即:均需要涉及大量的交互和聚合操作。而Focal Modulation计算过程得到大量简化。
原理图

FocalNet代码实现

# --------------------------------------------------------
# FocalNets -- Focal Modulation Networks
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Jianwei Yang (jianwyan@microsoft.com)
# --------------------------------------------------------import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal___all__ = ['focalnet_tiny_srf', 'focalnet_tiny_lrf', 'focalnet_small_srf', 'focalnet_small_lrf', 'focalnet_base_srf', 'focalnet_base_lrf', 'focalnet_large_fl3', 'focalnet_large_fl4', 'focalnet_xlarge_fl3', 'focalnet_xlarge_fl4', 'focalnet_huge_fl3', 'focalnet_huge_fl4']def update_weight(model_dict, weight_dict):idx, temp_dict = 0, {}for k, v in weight_dict.items():if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):temp_dict[k] = vidx += 1model_dict.update(temp_dict)print(f'loading weights... {idx}/{len(model_dict)} items')return model_dictclass Mlp(nn.Module):def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):super().__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresself.fc1 = nn.Linear(in_features, hidden_features)self.act = act_layer()self.fc2 = nn.Linear(hidden_features, out_features)self.drop = nn.Dropout(drop)def forward(self, x):x = self.fc1(x)     x = self.act(x)x = self.drop(x)x = self.fc2(x)x = self.drop(x)return xclass FocalModulation(nn.Module):def __init__(self, dim, focal_window, focal_level, focal_factor=2, bias=True, proj_drop=0., use_postln_in_modulation=False, normalize_modulator=False):super().__init__()self.dim = dimself.focal_window = focal_windowself.focal_level = focal_levelself.focal_factor = focal_factorself.use_postln_in_modulation = use_postln_in_modulationself.normalize_modulator = normalize_modulatorself.f = nn.Linear(dim, 2*dim + (self.focal_level+1), bias=bias)self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, bias=bias)self.act = nn.GELU()self.proj = nn.Linear(dim, dim)self.proj_drop = nn.Dropout(proj_drop)self.focal_layers = nn.ModuleList()self.kernel_sizes = []for k in range(self.focal_level):kernel_size = self.focal_factor*k + self.focal_windowself.focal_layers.append(nn.Sequential(nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, groups=dim, padding=kernel_size//2, bias=False),nn.GELU(),))              self.kernel_sizes.append(kernel_size)          if self.use_postln_in_modulation:self.ln = nn.LayerNorm(dim)def forward(self, x):"""Args:x: input features with shape of (B, H, W, C)"""C = x.shape[-1]# pre linear projectionx = self.f(x).permute(0, 3, 1, 2).contiguous()q, ctx, gates = torch.split(x, (C, C, self.focal_level+1), 1)# context aggreationctx_all = 0 for l in range(self.focal_level):         ctx = self.focal_layers[l](ctx)ctx_all = ctx_all + ctx * gates[:, l:l+1]ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True))ctx_all = ctx_all + ctx_global * gates[:,self.focal_level:]# normalize contextif self.normalize_modulator:ctx_all = ctx_all / (self.focal_level+1)# focal modulationmodulator = self.h(ctx_all)x_out = q * modulatorx_out = x_out.permute(0, 2, 3, 1).contiguous()if self.use_postln_in_modulation:x_out = self.ln(x_out)# post linear porjectionx_out = self.proj(x_out)x_out = self.proj_drop(x_out)return x_outdef extra_repr(self) -> str:return f'dim={self.dim}'def flops(self, N):# calculate flops for 1 window with token length of Nflops = 0flops += N * self.dim * (self.dim * 2 + (self.focal_level+1))# focal convolutionfor k in range(self.focal_level):flops += N * (self.kernel_sizes[k]**2+1) * self.dim# global gatingflops += N * 1 * self.dim #  self.linearflops += N * self.dim * (self.dim + 1)# x = self.proj(x)flops += N * self.dim * self.dimreturn flopsclass FocalNetBlock(nn.Module):r""" Focal Modulation Network Block.Args:dim (int): Number of input channels.input_resolution (tuple[int]): Input resulotion.mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.drop (float, optional): Dropout rate. Default: 0.0drop_path (float, optional): Stochastic depth rate. Default: 0.0act_layer (nn.Module, optional): Activation layer. Default: nn.GELUnorm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNormfocal_level (int): Number of focal levels. focal_window (int): Focal window size at first focal leveluse_layerscale (bool): Whether use layerscalelayerscale_value (float): Initial layerscale valueuse_postln (bool): Whether use layernorm after modulation"""def __init__(self, dim, input_resolution, mlp_ratio=4., drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,focal_level=1, focal_window=3,use_layerscale=False, layerscale_value=1e-4, use_postln=False, use_postln_in_modulation=False, normalize_modulator=False):super().__init__()self.dim = dimself.input_resolution = input_resolutionself.mlp_ratio = mlp_ratioself.focal_window = focal_windowself.focal_level = focal_levelself.use_postln = use_postlnself.norm1 = norm_layer(dim)self.modulation = FocalModulation(dim, proj_drop=drop, focal_window=focal_window, focal_level=self.focal_level, use_postln_in_modulation=use_postln_in_modulation, normalize_modulator=normalize_modulator)self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()self.norm2 = norm_layer(dim)mlp_hidden_dim = int(dim * mlp_ratio)self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)self.gamma_1 = 1.0self.gamma_2 = 1.0    if use_layerscale:self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)self.H = Noneself.W = Nonedef forward(self, x):H, W = self.H, self.WB, L, C = x.shapeshortcut = x# Focal Modulationx = x if self.use_postln else self.norm1(x)x = x.view(B, H, W, C)x = self.modulation(x).view(B, H * W, C)x = x if not self.use_postln else self.norm1(x)# FFNx = shortcut + self.drop_path(self.gamma_1 * x)x = x + self.drop_path(self.gamma_2 * (self.norm2(self.mlp(x)) if self.use_postln else self.mlp(self.norm2(x))))return xdef extra_repr(self) -> str:return f"dim={self.dim}, input_resolution={self.input_resolution}, " \f"mlp_ratio={self.mlp_ratio}"def flops(self):flops = 0H, W = self.input_resolution# norm1flops += self.dim * H * W# W-MSA/SW-MSAflops += self.modulation.flops(H*W)# mlpflops += 2 * H * W * self.dim * self.dim * self.mlp_ratio# norm2flops += self.dim * H * Wreturn flopsclass BasicLayer(nn.Module):""" A basic Focal Transformer layer for one stage.Args:dim (int): Number of input channels.input_resolution (tuple[int]): Input resolution.depth (int): Number of blocks.window_size (int): Local window size.mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: Trueqk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.drop (float, optional): Dropout rate. Default: 0.0drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNormdownsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: Noneuse_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.focal_level (int): Number of focal levelsfocal_window (int): Focal window size at first focal leveluse_layerscale (bool): Whether use layerscalelayerscale_value (float): Initial layerscale valueuse_postln (bool): Whether use layernorm after modulation"""def __init__(self, dim, out_dim, input_resolution, depth,mlp_ratio=4., drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, focal_level=1, focal_window=1, use_conv_embed=False, use_layerscale=False, layerscale_value=1e-4, use_postln=False, use_postln_in_modulation=False, normalize_modulator=False):super().__init__()self.dim = dimself.input_resolution = input_resolutionself.depth = depthself.use_checkpoint = use_checkpoint# build blocksself.blocks = nn.ModuleList([FocalNetBlock(dim=dim, input_resolution=input_resolution,mlp_ratio=mlp_ratio, drop=drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,norm_layer=norm_layer,focal_level=focal_level,focal_window=focal_window, use_layerscale=use_layerscale, layerscale_value=layerscale_value,use_postln=use_postln, use_postln_in_modulation=use_postln_in_modulation, normalize_modulator=normalize_modulator, )for i in range(depth)])if downsample is not None:self.downsample = downsample(img_size=input_resolution, patch_size=2, in_chans=dim, embed_dim=out_dim, use_conv_embed=use_conv_embed, norm_layer=norm_layer, is_stem=False)else:self.downsample = Nonedef forward(self, x, H, W):for blk in self.blocks:blk.H, blk.W = H, Wif self.use_checkpoint:x = checkpoint.checkpoint(blk, x)else:x = blk(x)if self.downsample is not None:x = x.transpose(1, 2).reshape(x.shape[0], -1, H, W)x, Ho, Wo = self.downsample(x)else:Ho, Wo = H, W        return x, Ho, Wodef extra_repr(self) -> str:return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"def flops(self):flops = 0for blk in self.blocks:flops += blk.flops()if self.downsample is not None:flops += self.downsample.flops()return flopsclass PatchEmbed(nn.Module):r""" Image to Patch EmbeddingArgs:img_size (int): Image size.  Default: 224.patch_size (int): Patch token size. Default: 4.in_chans (int): Number of input image channels. Default: 3.embed_dim (int): Number of linear projection output channels. Default: 96.norm_layer (nn.Module, optional): Normalization layer. Default: None"""def __init__(self, img_size=(224, 224), patch_size=4, in_chans=3, embed_dim=96, use_conv_embed=False, norm_layer=None, is_stem=False):super().__init__()patch_size = to_2tuple(patch_size)patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]self.img_size = img_sizeself.patch_size = patch_sizeself.patches_resolution = patches_resolutionself.num_patches = patches_resolution[0] * patches_resolution[1]self.in_chans = in_chansself.embed_dim = embed_dimif use_conv_embed:# if we choose to use conv embedding, then we treat the stem and non-stem differentlyif is_stem:kernel_size = 7; padding = 2; stride = 4else:kernel_size = 3; padding = 1; stride = 2self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)else:self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)if norm_layer is not None:self.norm = norm_layer(embed_dim)else:self.norm = Nonedef forward(self, x):B, C, H, W = x.shapex = self.proj(x)        H, W = x.shape[2:]x = x.flatten(2).transpose(1, 2)  # B Ph*Pw Cif self.norm is not None:x = self.norm(x)return x, H, Wdef flops(self):Ho, Wo = self.patches_resolutionflops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])if self.norm is not None:flops += Ho * Wo * self.embed_dimreturn flopsclass FocalNet(nn.Module):r""" Focal Modulation Networks (FocalNets)Args:img_size (int | tuple(int)): Input image size. Default 224patch_size (int | tuple(int)): Patch size. Default: 4in_chans (int): Number of input image channels. Default: 3num_classes (int): Number of classes for classification head. Default: 1000embed_dim (int): Patch embedding dimension. Default: 96depths (tuple(int)): Depth of each Focal Transformer layer.mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4drop_rate (float): Dropout rate. Default: 0drop_path_rate (float): Stochastic depth rate. Default: 0.1norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.patch_norm (bool): If True, add normalization after patch embedding. Default: Trueuse_checkpoint (bool): Whether to use checkpointing to save memory. Default: False focal_levels (list): How many focal levels at all stages. Note that this excludes the finest-grain level. Default: [1, 1, 1, 1] focal_windows (list): The focal window size at all stages. Default: [7, 5, 3, 1] use_conv_embed (bool): Whether use convolutional embedding. We noted that using convolutional embedding usually improve the performance, but we do not use it by default. Default: False use_layerscale (bool): Whether use layerscale proposed in CaiT. Default: False layerscale_value (float): Value for layer scale. Default: 1e-4 use_postln (bool): Whether use layernorm after modulation (it helps stablize training of large models)"""def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000,embed_dim=96, depths=[2, 2, 6, 2], mlp_ratio=4., drop_rate=0., drop_path_rate=0.1,norm_layer=nn.LayerNorm, patch_norm=True,use_checkpoint=False,                 focal_levels=[2, 2, 2, 2], focal_windows=[3, 3, 3, 3], use_conv_embed=False, use_layerscale=False, layerscale_value=1e-4, use_postln=False, use_postln_in_modulation=False, normalize_modulator=False, **kwargs):super().__init__()self.num_layers = len(depths)embed_dim = [embed_dim * (2 ** i) for i in range(self.num_layers)]self.num_classes = num_classesself.embed_dim = embed_dimself.patch_norm = patch_normself.num_features = embed_dim[-1]self.mlp_ratio = mlp_ratio# split image into patches using either non-overlapped embedding or overlapped embeddingself.patch_embed = PatchEmbed(img_size=to_2tuple(img_size), patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim[0], use_conv_embed=use_conv_embed, norm_layer=norm_layer if self.patch_norm else None, is_stem=True)num_patches = self.patch_embed.num_patchespatches_resolution = self.patch_embed.patches_resolutionself.patches_resolution = patches_resolutionself.pos_drop = nn.Dropout(p=drop_rate)# stochastic depthdpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule# build layersself.layers = nn.ModuleList()for i_layer in range(self.num_layers):layer = BasicLayer(dim=embed_dim[i_layer], out_dim=embed_dim[i_layer+1] if (i_layer < self.num_layers - 1) else None,  input_resolution=(patches_resolution[0] // (2 ** i_layer),patches_resolution[1] // (2 ** i_layer)),depth=depths[i_layer],mlp_ratio=self.mlp_ratio,drop=drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],norm_layer=norm_layer, downsample=PatchEmbed if (i_layer < self.num_layers - 1) else None,focal_level=focal_levels[i_layer], focal_window=focal_windows[i_layer], use_conv_embed=use_conv_embed,use_checkpoint=use_checkpoint, use_layerscale=use_layerscale, layerscale_value=layerscale_value, use_postln=use_postln,use_postln_in_modulation=use_postln_in_modulation, normalize_modulator=normalize_modulator)self.layers.append(layer)self.norm = norm_layer(self.num_features)self.apply(self._init_weights)self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]def _init_weights(self, m):if isinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)@torch.jit.ignoredef no_weight_decay(self):return {''}@torch.jit.ignoredef no_weight_decay_keywords(self):return {''}def forward(self, x):input_size = x.size(2)scale = [4, 8, 16, 32]x, H, W = self.patch_embed(x)x = self.pos_drop(x)features = [x, None, None, None]for layer in self.layers:x, H, W = layer(x, H, W)if input_size // H in scale:features[scale.index(input_size // H)] = x# features[-1] = self.norm(features[-1])  # B L Cfor i in range(len(features)):features[i] = torch.transpose(features[i], dim0=2, dim1=1).view(-1,features[i].size(2), int(features[i].size(1) ** 0.5), int(features[i].size(1) ** 0.5))return featuresdef flops(self):flops = 0flops += self.patch_embed.flops()for i, layer in enumerate(self.layers):flops += layer.flops()flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)flops += self.num_features * self.num_classesreturn flopsmodel_urls = {"focalnet_tiny_srf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth","focalnet_tiny_lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth","focalnet_small_srf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth","focalnet_small_lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth","focalnet_base_srf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth","focalnet_base_lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth",    "focalnet_large_fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet_large_fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet_xlarge_fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet_xlarge_fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", "focalnet_huge_fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_huge_lrf_224.pth", "focalnet_huge_fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_huge_lrf_224_fl4.pth", 
}def focalnet_tiny_srf(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, **kwargs)if pretrained:url = model_urls['focalnet_tiny_srf']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_small_srf(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 18, 2], embed_dim=96, **kwargs)if pretrained:url = model_urls['focalnet_small_srf']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_base_srf(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 18, 2], embed_dim=128, **kwargs)if pretrained:url = model_urls['focalnet_base_srf']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_tiny_lrf(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, **kwargs)if pretrained:url = model_urls['focalnet_tiny_lrf']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_small_lrf(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 18, 2], embed_dim=96, **kwargs)if pretrained:url = model_urls['focalnet_small_lrf']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_base_lrf(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 18, 2], embed_dim=128, **kwargs)if pretrained:url = model_urls['focalnet_base_lrf']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_tiny_iso(pretrained=False, **kwargs):model = FocalNet(depths=[12], patch_size=16, embed_dim=192, **kwargs)if pretrained:url = model_urls['focalnet_tiny_iso']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_small_iso(pretrained=False, **kwargs):model = FocalNet(depths=[12], patch_size=16, embed_dim=384, **kwargs)if pretrained:url = model_urls['focalnet_small_iso']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_base_iso(pretrained=False, **kwargs):model = FocalNet(depths=[12], patch_size=16, embed_dim=768, focal_levels=[3], focal_windows=[3], use_layerscale=True, use_postln=True, **kwargs)if pretrained:url = model_urls['focalnet_base_iso']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return model# FocalNet large+ models 
def focalnet_large_fl3(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 18, 2], embed_dim=192, **kwargs)if pretrained:url = model_urls['focalnet_large_fl3']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_large_fl4(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 18, 2], embed_dim=192, **kwargs)if pretrained:url = model_urls['focalnet_large_fl4']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_xlarge_fl3(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 18, 2], embed_dim=256, **kwargs)if pretrained:url = model_urls['focalnet_xlarge_fl3']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_xlarge_fl4(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 18, 2], embed_dim=256, **kwargs)if pretrained:url = model_urls['focalnet_xlarge_fl4']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_huge_fl3(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 18, 2], embed_dim=352, **kwargs)if pretrained:url = model_urls['focalnet_huge_fl3']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modeldef focalnet_huge_fl4(pretrained=False, **kwargs):model = FocalNet(depths=[2, 2, 18, 2], embed_dim=352, **kwargs)if pretrained:url = model_urls['focalnet_huge_fl4']checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))return modelif __name__ == '__main__':from copy import deepcopyimg_size = 640x = torch.rand(16, 3, img_size, img_size).cuda()model = focalnet_tiny_srf(pretrained=True).cuda()# model_copy = deepcopy(model)for i in model(x):print(i.size())flops = model.flops()print(f"number of GFLOPs: {flops / 1e9}")n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)print(f"number of params: {n_parameters}")print(list(model_urls.keys()))

Backbone替换

yolo.py修改

def parse_model函数

def parse_model(d, ch):  # model_dict, input_channels(3)# Parse a YOLOv5 model.yaml dictionaryLOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')if act:Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()LOGGER.info(f"{colorstr('activation:')} {act}")  # printna = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchorsno = na * (nc + 5)  # number of outputs = anchors * (classes + 5)is_backbone = Falselayers, save, c2 = [], [], ch[-1]  # layers, savelist, ch outfor i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, argstry:t = mm = eval(m) if isinstance(m, str) else m  # eval stringsexcept:passfor j, a in enumerate(args):with contextlib.suppress(NameError):try:args[j] = eval(a) if isinstance(a, str) else a  # eval stringsexcept:args[j] = an = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gainif m in {Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:c1, c2 = ch[f], args[0]if c2 != no:  # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:args.insert(2, n)  # number of repeatsn = 1elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)# TODO: channel, gw, gdelif m in {Detect, Segment}:args.append([ch[x] for x in f])if isinstance(args[1], int):  # number of anchorsargs[1] = [list(range(args[1] * 2))] * len(f)if m is Segment:args[3] = make_divisible(args[3] * gw, 8)elif m is Contract:c2 = ch[f] * args[0] ** 2elif m is Expand:c2 = ch[f] // args[0] ** 2elif isinstance(m, str):t = mm = timm.create_model(m, pretrained=args[0], features_only=True)c2 = m.feature_info.channels()elif m in {focalnet_tiny_srf}: #可添加更多Backbonem = m(*args)c2 = m.channelelse:c2 = ch[f]if isinstance(c2, list):is_backbone = Truem_ = mm_.backbone = Trueelse:m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # modulet = str(m)[8:-2].replace('__main__.', '')  # module typenp = sum(x.numel() for x in m_.parameters())  # number paramsm_.i, m_.f, m_.type, m_.np = i + 4 if is_backbone else i, f, t, np  # attach index, 'from' index, type, number paramsLOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # printsave.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelistlayers.append(m_)if i == 0:ch = []if isinstance(c2, list):ch.extend(c2)for _ in range(5 - len(ch)):ch.insert(0, 0)else:ch.append(c2)return nn.Sequential(*layers), sorted(save)

def _forward_once函数

def _forward_once(self, x, profile=False, visualize=False):y, dt = [], []  # outputsfor m in self.model:if m.f != -1:  # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layersif profile:self._profile_one_layer(m, x, dt)if hasattr(m, 'backbone'):x = m(x)for _ in range(5 - len(x)):x.insert(0, None)for i_idx, i in enumerate(x):if i_idx in self.save:y.append(i)else:y.append(None)x = x[-1]else:x = m(x)  # runy.append(x if m.i in self.save else None)  # save outputif visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)return x

创建新的.yaml配置文件

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# 0-P1/2
# 1-P2/4
# 2-P3/8
# 3-P4/16
# 4-P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, focalnet_tiny_srf, [False]], # 4[-1, 1, SPPF, [1024, 5]],  # 5]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]], # 6[-1, 1, nn.Upsample, [None, 2, 'nearest']], # 7[[-1, 3], 1, Concat, [1]],  # cat backbone P4 8[-1, 3, C3, [512, False]],  # 9[-1, 1, Conv, [256, 1, 1]], # 10[-1, 1, nn.Upsample, [None, 2, 'nearest']], # 11[[-1, 2], 1, Concat, [1]],  # cat backbone P3 12[-1, 3, C3, [256, False]],  # 13 (P3/8-small)[-1, 1, Conv, [256, 3, 2]], # 14[[-1, 10], 1, Concat, [1]],  # cat head P4 15[-1, 3, C3, [512, False]],  # 16 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]], # 17[[-1, 5], 1, Concat, [1]],  # cat head P5 18[-1, 3, C3, [1024, False]],  # 19 (P5/32-large)[[13, 16, 19], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/149056.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

常见的锁策略

目录 一.乐观锁 vs 悲观锁 二.轻量级锁 vs 重量级锁 三.自旋锁 vs 挂起等待锁 四.互斥锁 vs 读写锁 五.可重入锁 vs不可重入锁 一.乐观锁 vs 悲观锁 悲观锁 : 总是假设最坏的情况&#xff0c;每次去拿数据的时候都认为别人会修改&#xff0c;所以每次在拿数据的时候都会上锁…

C++面试题准备

文章目录 一、线程1.什么是进程&#xff0c;线程&#xff0c;彼此有什么区别?2.多进程、多线程的优缺点3.什么时候用进程&#xff0c;什么时候用线程4.多进程、多线程同步&#xff08;通讯&#xff09;的方法5.父进程、子进程的关系以及区别6.什么是进程上下文、中断上下文7.一…

基于SpringBoot的视频网站系统

目录 前言 一、技术栈 二、系统功能介绍 用户信息管理 视频分享管理 视频排名管理 交流论坛管理 留言板管理 三、核心代码 1、登录模块 2、文件上传模块 3、代码封装 前言 使用旧方法对视频信息进行系统化管理已经不再让人们信赖了&#xff0c;把现在的网络信息技术运…

YOLOv8改进算法之添加CA注意力机制

1. CA注意力机制 CA&#xff08;Coordinate Attention&#xff09;注意力机制是一种用于加强深度学习模型对输入数据的空间结构理解的注意力机制。CA 注意力机制的核心思想是引入坐标信息&#xff0c;以便模型可以更好地理解不同位置之间的关系。如下图&#xff1a; 1. 输入特…

C++(STL容器适配器)

前言&#xff1a; 适配器也称配接器&#xff08;adapters&#xff09;在STL组件的灵活组合运用功能上&#xff0c;扮演着轴承、转换器的角色。 《Design Patterns》对adapter的定义如下&#xff1a;将一个class的接口转换为另一个class的接口&#xff0c;使原本因接口不兼容而…

ParagonNTFSforMac_15.5.102中文版最受欢迎的NTFS硬盘格式读取工具

Paragon NTFS for Mac是一款可以为您轻松解决Mac平台上不能识别Windows通用的NTFS文件难题&#xff0c;这是一款强大的Mac读写工具&#xff0c;相信在很多时候&#xff0c;Mac用户需要对NTFS文件的移动硬盘进行写入&#xff0c;但是macOS系统默认是不让写入的&#xff0c;使用小…

【gitlab】本地项目上传gitlab

需求描述 解决方法 下面的截图是gitlab空项目的描述 上传一个本地项目按其中“Push an existing folder”命令即可。 以renren-fast项目为例 # 用git bash 下载renren-fast项目 git clone https://gitee.com/renrenio/renren-fast.git# 在renren-fast的所属目录 打开git ba…

项目进展(八)-编写代码,驱动ADS1285

一、代码 根据芯片的数据手册编写部分驱动&#xff0c;首先看部分引脚的波形&#xff1a; DRDY: CS&#xff1a; 首先在代码初始化时连续写入三个寄存器&#xff1a; void WriteReg(uint8_t startAddr, uint8_t *regData, uint8_t number) {uint8_t i0;// 循环写number1次…

GEE16: 区域日均降水量计算

Precipitation 1. 区域日均降水量计算2. 降水时间序列3. 降水数据年度时间序列对比分析 1. 区域日均降水量计算 今天分析一个计算区域日均降水量的方法&#xff1a; 数据信息&#xff1a;   Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) is a…

MySQL:数据库的物理备份和恢复-冷备份(3)

介绍 物理备份&#xff1a; 直接复制数据文件进行的备份 优点&#xff1a;不需要其他的工具&#xff0c;直接复制就好&#xff0c;恢复直接复制备份文件即可 缺点&#xff1a;与存储引擎有关&#xff0c;跨平台能力较弱 逻辑备份&#xff1a; 从数据库中导出数据另存而进行的备…

后端面经学习自测(二)

文章目录 1、Http1.1和2.0的区别大概是什么&#xff1f;HTTP & HTTPS 2、HTTP&#xff0c;用户后续的操作&#xff0c;服务端如何知道属于同一个用户cookie & session & token手机验证码登录流程SSO单点登录 3、如果服务端是一个集群机器&#xff1f;4、hashmap是线…

Postman使用实例

Postman使用实例 实体类Emp package com.example.springboot_postman.pojo;import com.fasterxml.jackson.annotation.JsonIgnoreProperties; import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor;import javax.persistence.*; import j…

map和set

1. 关联式容器 我们接触过STL中的部分容器&#xff0c;比如&#xff1a;vector、list、deque、 forward_list(C11)等&#xff0c;这些容器统称为序列式容器&#xff0c;因为其底层为线性序列的数据结构&#xff0c;里面存储的是元素本身。 那什么是关联式容器&#xff1f;它与…

【AI视野·今日Robot 机器人论文速览 第四十二期】Wed, 27 Sep 2023

AI视野今日CS.Robotics 机器人学论文速览 Wed, 27 Sep 2023 Totally 48 papers &#x1f449;上期速览✈更多精彩请移步主页 Interesting: &#x1f4da;***Tactile Estimation of Extrinsic Contact,基于触觉的外部接触估计与稳定放置 (from 三菱电机) &#x1f4da;充气型…

Pikachu靶场——远程命令执行漏洞(RCE)

文章目录 1. RCE1.1 exec "ping"1.1.1 源代码分析1.1.2 漏洞防御 1.2 exec "eval"1.2.1 源代码分析1.2.2 漏洞防御 1.3 RCE 漏洞防御 1. RCE RCE(remote command/code execute)概述&#xff1a; RCE漏洞&#xff0c;可以让攻击者直接向后台服务器远程注入…

【Java 进阶篇】JDBC数据库连接池Druid详解

在Java应用程序中&#xff0c;与数据库进行交互是一个常见的任务。为了更有效地管理数据库连接并提高性能&#xff0c;数据库连接池是一种常见的解决方案。Druid是一个流行的JDBC数据库连接池&#xff0c;它具有丰富的功能和高性能。本博客将详细介绍Druid连接池&#xff0c;包…

代数科学计算:LiveMath Maker v3.6.0 cRACK

LiveMath Maker 是一个数学计算机程序&#xff0c;您可以使用它来制作(并探索、实验和创建)LiveMath。您和LiveMath Maker制作的任何LiveMath都可以通过互联网与世界共享。 用LiveMath Maker 来进行数学研究&#xff0c;函数学习&#xff0c;深入探索、实验和创建你的LiveMath…

C++11新特性(语法糖,新容器)

距离C11版本发布已经过去那么多年了&#xff0c;为什么还称为新特性呢&#xff1f;因为笔者前面探讨的内容&#xff0c;除了auto&#xff0c;范围for这些常用的&#xff0c;基本上是用着C98的内容&#xff0c;虽说C11已经发布很多年&#xff0c;却是目前被使用最广泛的版本。因…

数据库的备份与恢复

数据备份的重要性 备份的主要目的是灾难恢复。 在生产环境中&#xff0c;数据的安全性至关重要。 任何数据的丢失都可能产生严重的后果。 造成数据丢失的原因&#xff1a; 程序错误人为操作错误运算错误磁盘故障灾难&#xff08;如火灾、地震&#xff09;和盗窃 数据库备份…

回收站里面删除的照片如何恢复?

现在拍照已经成为人们生活中的一种方式&#xff0c;照片为我们保留了许多珍贵而美好的回忆。大家通常会把重要的照片保存在硬盘里&#xff0c;但当不小心把照片移入回收站并彻底删除时&#xff0c;情况就有点糟糕了。那么&#xff0c;回收站里删除的照片还有办法恢复吗&#xf…