MOS管:
全称为金属氧化物半导体场效应管(Metal Oxide Semiconductor Field Effect Transistor),也被称为MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)。它是一种半导体器件,常用于电子电路中的开关、放大、稳压等功能。
一、MOS管特点
1、高输入阻抗:MOS管的输入电阻非常高,因此可以减小输入信号源的功耗。
2、低输出阻抗:MOS管的输出电阻非常低,可以提供较大的输出电流。
3、低功耗:MOS管的静态功耗非常低,几乎不需要电流输入。
4、高速度:MOS管的开关速度非常快,可以实现高频率的开关操作。
5、可控性强:MOS管的导通和截止可以通过控制栅极电压来实现,具有很好的可控性。
二、MOS管的结构图与工作原理
其结构示意图:
MOS管主要由源极(Source)、漏极(Drain)、栅极(Gate)和绝缘层(Oxide)组成。当栅极电压为零时,绝缘层会阻止漏极和源极之间的电流流动。当栅极电压加正偏时,形成了栅源电压,绝缘层下的沟道区域会形成N型或P型导电层,允许电流流过。栅极电压越高,导电层越宽,电流越大。通过调节栅极电压,可以控制MOS管的导通和截止
电极 D(Drain) 称为漏极,相当双极型三极管的集电极;
电极G(Gate) 称为栅极,相当于的基极;
电极S(Source)称为源极,相当于发射极。
三、MOS管分类
1、N沟道MOS管(NMOS):沟道区域为N型半导体,栅极电压为正时导通。
2、P沟道MOS管(PMOS):沟道区域为P型半导体,栅极电压为负时导通。
3、增强型MOS管(Enhancement MOSFET):栅极电压为正时导通,栅极电压为零时截止。
4、耗尽型MOS管(Depletion MOSFET):栅极电压为负时导通,栅极电压为零时截止。
5、压控型MOS管(VDMOS):用于功率放大器,具有较低的导通电阻。
mos管的结构图-N沟道增强型MOS场效应管结构
mos管的结构图,N沟道增强型MOS场效应管结构如下文。在一块掺杂浓度较低的P型硅衬底上,制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,分别作漏极d和源极s。然后在半导体表面覆盖一层很薄的二氧化硅(SiO2)绝缘层,在漏——源极间的绝缘层上再装上一个铝电极,作为栅极g。衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS管。MOS管的源极和衬底通常是接在一起的(大多数管子在出厂前已连接好)。它的栅极与其它电极间是绝缘的。
图(a)、(b)分别是它的结构示意图和代表符号。代表符号中的箭头方向表示由P(衬底)指向N(沟道)。P沟道增强型MOS管的箭头方向与上述相反,如图(c)所示。
mos管的结构图-N沟道增强型MOS场效应管的工作原理
mos管的结构图,N沟道增强型MOS场效应管的工作原理。
(1)vGS对iD及沟道的控制作用
① vGS=0 的情况
从图1(a)可以看出,增强型MOS管的漏极d和源极s之间有两个背靠背的PN结。当栅——源电压vGS=0时,即使加上漏——源电压vDS,而且不论vDS的极性如何,总有一个PN结处于反偏状态,漏——源极间没有导电沟道,所以这时漏极电流iD≈0。
② vGS>0 的情况
若vGS>0,则栅极和衬底之间的SiO2绝缘层中便产生一个电场。电场方向垂直于半导体表面的由栅极指向衬底的电场。这个电场能排斥空穴而吸引电子。
排斥空穴:使栅极附近的P型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层。吸引电子:将 P型衬底中的电子(少子)被吸引到衬底表面。
(2)导电沟道的形成:
当vGS数值较小,吸引电子的能力不强时,漏——源极之间仍无导电沟道出现,如图1(b)所示。vGS增加时,吸引到P衬底表面层的电子就增多,当vGS达到某一数值时,这些电子在栅极附近的P衬底表面便形成一个N型薄层,且与两个N+区相连通,在漏——源极间形成N型导电沟道,其导电类型与P衬底相反,故又称为反型层,如图1(c)所示。vGS越大,作用于半导体表面的电场就越强,吸引到P衬底表面的电子就越多,导电沟道越厚,沟道电阻越小。
开始形成沟道时的栅——源极电压称为开启电压,用VT表示。
上面讨论的N沟道MOS管在vGS<VT时,不能形成导电沟道,管子处于截止状态。只有当vGS≥VT时,才有沟道形成。这种必须在vGS≥VT时才能形成导电沟道的MOS管称为增强型MOS管。沟道形成以后,在漏——源极间加上正向电压vDS,就有漏极电流产生。
VDS对ID的影响
如图(a)所示,当vGS>VT且为一确定值时,漏——源电压vDS对导电沟道及电流iD的影响与结型场效应管相似。
漏极电流iD沿沟道产生的电压降使沟道内各点与栅极间的电压不再相等,靠近源极一端的电压最大,这里沟道最厚,而漏极一端电压最小,其值为VGD=vGS-vDS,因而这里沟道最薄。但当vDS较小(vDS)。
随着vDS的增大,靠近漏极的沟道越来越薄,当vDS增加到使VGD=vGS-vDS=VT(或vDS=vGS-VT)时,沟道在漏极一端出现预夹断,如图2(b)所示。再继续增大vDS,夹断点将向源极方向移动,如图2(c)所示。由于vDS的增加部分几乎全部降落在夹断区,故iD几乎不随vDS增大而增加,管子进入饱和区,iD几乎仅由vGS决定。
mos管的结构图-N沟道耗尽型MOS场效应管的基本结构
mos管的结构图(N沟道耗尽型基本结构)
(1)结构:
N沟道耗尽型MOS管与N沟道增强型MOS管基本相似。
(2)区别:
耗尽型MOS管在vGS=0时,漏——源极间已有导电沟道产生,而增强型MOS管要在vGS≥VT时才出现导电沟道。
(3)原因:
制造N沟道耗尽型MOS管时,在SiO2绝缘层中掺入了大量的碱金属正离子Na+或K+(制造P沟道耗尽型MOS管时掺入负离子),如图1(a)所示,因此即使vGS=0时,在这些正离子产生的电场作用下,漏——源极间的P型衬底表面也能感应生成N沟道(称为初始沟道),只要加上正向电压vDS,就有电流iD。
如果加上正的vGS,栅极与N沟道间的电场将在沟道中吸引来更多的电子,沟道加宽,沟道电阻变小,iD增大。反之vGS为负时,沟道中感应的电子减少,沟道变窄,沟道电阻变大,iD减小。当vGS负向增加到某一数值时,导电沟道消失,iD趋于零,管子截止,故称为耗尽型。沟道消失时的栅-源电压称为夹断电压,仍用VP表示。与N沟道结型场效应管相同,N沟道耗尽型MOS管的夹断电压VP也为负值,但是,前者只能在vGS<0的情况下工作。而后者在vGS=0,vGS>0。
P沟道耗尽型MOSFET
P沟道MOSFET的工作原理与N沟道MOSFET完全相同,只不过导电的载流子不同,供电电压极性不同而已。这如同双极型三极管有NPN型和PNP型一样。
四、MOS管常见故障及预防措施
1、过热故障:MOS管在工作过程中可能会因为过载或电流过大而发生过热。预防措施包括合理设计散热系统、使用散热器等措施提高散热效果。
2、静电击穿:静电放电可能会对MOS管产生破坏性影响。预防措施包括在操作过程中使用防静电手套、使用防静电工作台等。
3、漏电流增大:MOS管的漏电流增大可能是由于栅极和漏极之间的绝缘层损坏导致。预防措施包括避免过高的栅极电压和过高的工作温度。
4、导通电阻增大:MOS管的导通电阻增大可能是由于导通通道区域的杂质或损坏导致。预防措施包括避免过高的工作电压和过高的工作温度。