Zookeeper经典应用场景实战(一)

文章目录

  • 1、Zookeeper Java客户端实战
    • 1.1、 Zookeeper 原生Java客户端使用
    • 1.2、 Curator开源客户端使用
  • 2、 Zookeeper在分布式命名服务中的实战
    • 2.1、 分布式API目录
    • 2.2、 分布式节点的命名
    • 2.3、 分布式的ID生成器
  • 3、Zookeeper实现分布式队列
    • 3.1、 设计思路
    • 3.2、 使用Apache Curator实现分布式队列
    • 3.3、 注意事项

1、Zookeeper Java客户端实战

ZooKeeper应用的开发主要通过Java客户端API去连接和操作ZooKeeper集群。可供选择的Java客户端API有:

  • ZooKeeper官方的Java客户端API。
  • 第三方的Java客户端API,比如Curator。

ZooKeeper官方的客户端API提供了基本的操作。例如,创建会话、创建节点、读取节点、更新数据、删除节点和检查节点是否存在等。不过,对于实际开发来说,ZooKeeper官方API有一些不足之处,具体如下:

  • ZooKeeper的Watcher监测是一次性的,每次触发之后都需要重新进行注册。
  • 会话超时之后没有实现重连机制。
  • 异常处理烦琐,ZooKeeper提供了很多异常,对于开发人员来说可能根本不知道应该如何处理这些抛出的异常。
  • 仅提供了简单的byte[]数组类型的接口,没有提供Java POJO级别的序列化数据处理接口。
  • 创建节点时如果抛出异常,需要自行检查节点是否存在。
  • 无法实现级联删除。

总之,ZooKeeper官方API功能比较简单,在实际开发过程中比较笨重,一般不推荐使用。

1.1、 Zookeeper 原生Java客户端使用

引入zookeeper client依赖

<!-- zookeeper client -->
<dependency><groupId>org.apache.zookeeper</groupId><artifactId>zookeeper</artifactId><version>3.8.0</version>
</dependency>

注意:保持与服务端版本一致,不然会有很多兼容性的问题

ZooKeeper原生客户端主要使用org.apache.zookeeper.ZooKeeper这个类来使用ZooKeeper服务。
ZooKeeper常用构造器
ZooKeeper (connectString, sessionTimeout, watcher)

  • connectString:使用逗号分隔的列表,每个ZooKeeper节点是一个host.port对,host 是机器名或者IP地址,port是ZooKeeper节点对客户端提供服务的端口号。客户端会任意选取connectString 中的一个节点建立连接。
  • sessionTimeout : session timeout时间。
  • watcher:用于接收到来自ZooKeeper集群的事件。

使用 zookeeper 原生 API,连接zookeeper集群

public class ZkClientDemo {private static final  String  CONNECT_STR="localhost:2181";private final static  String CLUSTER_CONNECT_STR="192.168.65.156:2181,192.168.65.190:2181,192.168.65.200:2181";public static void main(String[] args) throws Exception {final CountDownLatch countDownLatch=new CountDownLatch(1);ZooKeeper zooKeeper = new ZooKeeper(CLUSTER_CONNECT_STR,4000, new Watcher() {@Overridepublic void process(WatchedEvent event) {if(Event.KeeperState.SyncConnected==event.getState() && event.getType()== Event.EventType.None){//如果收到了服务端的响应事件,连接成功countDownLatch.countDown();System.out.println("连接建立");}}});System.out.printf("连接中");countDownLatch.await();//CONNECTEDSystem.out.println(zooKeeper.getState());//创建持久节点zooKeeper.create("/user","fox".getBytes(),ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);}}

Zookeeper主要方法

  • create(path, data, acl,createMode): 创建一个给定路径的 znode,并在 znode 保存 data[]的 数据,createMode指定 znode 的类型。
  • delete(path, version):如果给定 path 上的 znode 的版本和给定的 version 匹配, 删除 znode。
  • exists(path, watch):判断给定 path 上的 znode 是否存在,并在 znode 设置一个 watch。
  • getData(path, watch):返回给定 path 上的 znode 数据,并在 znode 设置一个 watch。
  • setData(path, data, version):如果给定 path 上的 znode 的版本和给定的 version 匹配,设置 znode 数据。
  • getChildren(path, watch):返回给定 path 上的 znode 的孩子 znode 名字,并在 znode 设置一个 watch。
  • sync(path):把客户端 session 连接节点和 leader 节点进行同步。
    方法特点:
  • 所有获取 znode 数据的 API 都可以设置一个 watch 用来监控 znode 的变化。
  • 所有更新 znode 数据的 API 都有两个版本: 无条件更新版本和条件更新版本。如果 version 为 -1,更新为无条件更新。否则只有给定的 version 和 znode 当前的 version 一样,才会进行更新,这样的更新是条件更新。
  • 所有的方法都有同步和异步两个版本。同步版本的方法发送请求给 ZooKeeper 并等待服务器的响 应。异步版本把请求放入客户端的请求队列,然后马上返回。异步版本通过 callback 来接受来 自服务端的响应。

同步创建节点:

@Test
public void createTest() throws KeeperException, InterruptedException {String path = zooKeeper.create(ZK_NODE, "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);log.info("created path: {}",path);
}

异步创建节点:

@Test
public void createAsycTest() throws InterruptedException {zooKeeper.create(ZK_NODE, "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE,CreateMode.PERSISTENT,(rc, path, ctx, name) -> log.info("rc  {},path {},ctx {},name {}",rc,path,ctx,name),"context");TimeUnit.SECONDS.sleep(Integer.MAX_VALUE);
}

修改节点数据

@Test
public void setTest() throws KeeperException, InterruptedException {Stat stat = new Stat();byte[] data = zooKeeper.getData(ZK_NODE, false, stat);log.info("修改前: {}",new String(data));zooKeeper.setData(ZK_NODE, "changed!".getBytes(), stat.getVersion());byte[] dataAfter = zooKeeper.getData(ZK_NODE, false, stat);log.info("修改后: {}",new String(dataAfter));
}

1.2、 Curator开源客户端使用

Curator是Netflix公司开源的一套ZooKeeper客户端框架,和ZkClient一样它解决了非常底层的细节开发工作,包括连接、重连、反复注册Watcher的问题以及NodeExistsException异常等。
Curator是Apache基金会的顶级项目之一,Curator具有更加完善的文档,另外还提供了一套易用性和可读性更强的Fluent风格的客户端API框架。
Curator还为ZooKeeper客户端框架提供了一些比较普遍的、开箱即用的、分布式开发用的解决方案,例如Recipe、共享锁服务、Master选举机制和分布式计算器等,帮助开发者避免了“重复造轮子”的无效开发工作。

Guava is to Java that Curator to ZooKeeper

在实际的开发场景中,使用Curator客户端就足以应付日常的ZooKeeper集群操作的需求。
官网:https://curator.apache.org/

引入依赖
Curator 包含了几个包:

  • curator-framework是对ZooKeeper的底层API的一些封装。
  • curator-client提供了一些客户端的操作,例如重试策略等。
  • curator-recipes封装了一些高级特性,如:Cache事件监听、选举、分布式锁、分布式计数器、分布式Barrier等。
<!-- zookeeper client -->
<dependency><groupId>org.apache.zookeeper</groupId><artifactId>zookeeper</artifactId><version>3.8.0</version>
</dependency><!--curator-->
<dependency><groupId>org.apache.curator</groupId><artifactId>curator-recipes</artifactId><version>5.1.0</version><exclusions><exclusion><groupId>org.apache.zookeeper</groupId><artifactId>zookeeper</artifactId></exclusion></exclusions>
</dependency>

创建一个客户端实例
在使用curator-framework包操作ZooKeeper前,首先要创建一个客户端实例。这是一个CuratorFramework类型的对象,有两种方法:

  • 使用工厂类CuratorFrameworkFactory的静态newClient()方法。
// 重试策略 
RetryPolicy retryPolicy = new ExponentialBackoffRetry(1000, 3)
//创建客户端实例
CuratorFramework client = CuratorFrameworkFactory.newClient(zookeeperConnectionString, retryPolicy);
//启动客户端
client.start();
  • 使用工厂类CuratorFrameworkFactory的静态builder构造者方法。
//随着重试次数增加重试时间间隔变大,指数倍增长baseSleepTimeMs * Math.max(1, random.nextInt(1 << (retryCount + 1)))
RetryPolicy retryPolicy = new ExponentialBackoffRetry(1000, 3);CuratorFramework client = CuratorFrameworkFactory.builder().connectString("192.168.128.129:2181").sessionTimeoutMs(5000)  // 会话超时时间.connectionTimeoutMs(5000) // 连接超时时间.retryPolicy(retryPolicy).namespace("base") // 包含隔离名称.build();
client.start();
  • connectionString:服务器地址列表,在指定服务器地址列表的时候可以是一个地址,也可以是多个地址。如果是多个地址,那么每个服务器地址列表用逗号分隔, 如 host1:port1,host2:port2,host3;port3 。

  • retryPolicy:重试策略,当客户端异常退出或者与服务端失去连接的时候,可以通过设置客户端重新连接 ZooKeeper 服务端。而 Curator 提供了 一次重试、多次重试等不同种类的实现方式。在 Curator 内部,可以通过判断服务器返回的 keeperException 的状态代码来判断是否进行重试处理,如果返回的是 OK 表示一切操作都没有问题,而 SYSTEMERROR 表示系统或服务端错误。

策略名称描述ExponentialBackoffRetry重试一组次数,重试之间的睡眠时间增加RetryNTimes重试最大次数RetryOneTime只重试一次RetryUntilElapsed在给定的时间结束之前重试

  • 超时时间:Curator 客户端创建过程中,有两个超时时间的设置。一个是 sessionTimeoutMs 会话超时时间,用来设置该条会话在 ZooKeeper 服务端的失效时间。另一个是 connectionTimeoutMs 客户端创建会话的超时时间,用来限制客户端发起一个会话连接到接收 ZooKeeper 服务端应答的时间。sessionTimeoutMs 作用在服务端,而 connectionTimeoutMs 作用在客户端。

创建节点

创建节点的方式如下面的代码所示,回顾我们之前课程中讲到的内容,描述一个节点要包括节点的类型,即临时节点还是持久节点、节点的数据信息、节点是否是有序节点等属性和性质。

@Test
public void testCreate() throws Exception {String path = curatorFramework.create().forPath("/curator-node");curatorFramework.create().withMode(CreateMode.PERSISTENT).forPath("/curator-node","some-data".getBytes())log.info("curator create node :{}  successfully.",path);
}

在 Curator 中,可以使用 create 函数创建数据节点,并通过 withMode 函数指定节点类型(持久化节点,临时节点,顺序节点,临时顺序节点,持久化顺序节点等),默认是持久化节点,之后调用 forPath 函数来指定节点的路径和数据信息。

一次性创建带层级结构的节点

@Test
public void testCreateWithParent() throws Exception {String pathWithParent="/node-parent/sub-node-1";String path = curatorFramework.create().creatingParentsIfNeeded().forPath(pathWithParent);log.info("curator create node :{}  successfully.",path);
}

获取数据

@Test
public void testGetData() throws Exception {byte[] bytes = curatorFramework.getData().forPath("/curator-node");log.info("get data from  node :{}  successfully.",new String(bytes));
}

更新节点

我们通过客户端实例的 setData() 方法更新 ZooKeeper 服务上的数据节点,在setData 方法的后边,通过 forPath 函数来指定更新的数据节点路径以及要更新的数据。

@Test
public void testSetData() throws Exception {curatorFramework.setData().forPath("/curator-node","changed!".getBytes());byte[] bytes = curatorFramework.setData().forPath("/curator-node");log.info("get data from  node /curator-node :{}  successfully.",new String(bytes));
}

删除节点

@Test
public void testDelete() throws Exception {String pathWithParent="/node-parent";curatorFramework.delete().guaranteed().deletingChildrenIfNeeded().forPath(pathWithParent);
}

guaranteed:该函数的功能如字面意思一样,主要起到一个保障删除成功的作用,其底层工作方式是:只要该客户端的会话有效,就会在后台持续发起删除请求,直到该数据节点在 ZooKeeper 服务端被删除。

deletingChildrenIfNeeded:指定了该函数后,系统在删除该数据节点的时候会以递归的方式直接删除其子节点,以及子节点的子节点。

异步接口
Curator 引入了BackgroundCallback 接口,用来处理服务器端返回来的信息,这个处理过程是在异步线程中调用,默认在 EventThread 中调用,也可以自定义线程池。

public interface BackgroundCallback
{/*** Called when the async background operation completes** @param client the client* @param event operation result details* @throws Exception errors*/public void processResult(CuratorFramework client, CuratorEvent event) throws Exception;
}

如上接口,主要参数为 client 客户端, 和 服务端事件 event。
inBackground 异步处理默认在EventThread中执行

@Test
public void test() throws Exception {curatorFramework.getData().inBackground((item1, item2) -> {log.info(" background: {}", item2);}).forPath(ZK_NODE);TimeUnit.SECONDS.sleep(Integer.MAX_VALUE);
}

指定线程池

@Test
public void test() throws Exception {ExecutorService executorService = Executors.newSingleThreadExecutor();curatorFramework.getData().inBackground((item1, item2) -> {log.info(" background: {}", item2);},executorService).forPath(ZK_NODE);TimeUnit.SECONDS.sleep(Integer.MAX_VALUE);
}

Curator 监听器

/*** Receives notifications about errors and background events*/
public interface CuratorListener
{/*** Called when a background task has completed or a watch has triggered** @param client client* @param event the event* @throws Exception any errors*/public void         eventReceived(CuratorFramework client, CuratorEvent event) throws Exception;
}

针对 background 通知和错误通知。使用此监听器之后,调用inBackground 方法会异步获得监听

Curator Caches:
Curator 引入了 Cache 来实现对 Zookeeper 服务端事件监听,Cache 事件监听可以理解为一个本地缓存视图与远程 Zookeeper 视图的对比过程。Cache 提供了反复注册的功能。Cache 分为两类注册类型:节点监听和子节点监听。

node cache:
NodeCache 对某一个节点进行监听

public NodeCache(CuratorFramework client,String path)
Parameters:
client - the client
path - path to cache

可以通过注册监听器来实现,对当前节点数据变化的处理

public void addListener(NodeCacheListener listener)Add a change listener
Parameters:
listener - the listener
@Slf4j
public class NodeCacheTest extends AbstractCuratorTest{public static final String NODE_CACHE="/node-cache";@Testpublic void testNodeCacheTest() throws Exception {createIfNeed(NODE_CACHE);NodeCache nodeCache = new NodeCache(curatorFramework, NODE_CACHE);nodeCache.getListenable().addListener(new NodeCacheListener() {@Overridepublic void nodeChanged() throws Exception {log.info("{} path nodeChanged: ",NODE_CACHE);printNodeData();}});nodeCache.start();}public void printNodeData() throws Exception {byte[] bytes = curatorFramework.getData().forPath(NODE_CACHE);log.info("data: {}",new String(bytes));}
}

path cache:
PathChildrenCache 会对子节点进行监听,但是不会对二级子节点进行监听,

public PathChildrenCache(CuratorFramework client,String path,boolean cacheData)
Parameters:
client - the client
path - path to watch
cacheData - if true, node contents are cached in addition to the stat

可以通过注册监听器来实现,对当前节点的子节点数据变化的处理

public void addListener(PathChildrenCacheListener listener)Add a change listener
Parameters:
listener - the listener
@Slf4j
public class PathCacheTest extends AbstractCuratorTest{public static final String PATH="/path-cache";@Testpublic void testPathCache() throws Exception {createIfNeed(PATH);PathChildrenCache pathChildrenCache = new PathChildrenCache(curatorFramework, PATH, true);pathChildrenCache.getListenable().addListener(new PathChildrenCacheListener() {@Overridepublic void childEvent(CuratorFramework client, PathChildrenCacheEvent event) throws Exception {log.info("event:  {}",event);}});// 如果设置为true则在首次启动时就会缓存节点内容到Cache中pathChildrenCache.start(true);}
}

tree cache:
TreeCache 使用一个内部类TreeNode来维护这个一个树结构。并将这个树结构与ZK节点进行了映射。所以TreeCache 可以监听当前节点下所有节点的事件。

public TreeCache(CuratorFramework client,String path,boolean cacheData)
Parameters:
client - the client
path - path to watch
cacheData - if true, node contents are cached in addition to the stat

可以通过注册监听器来实现,对当前节点的子节点,及递归子节点数据变化的处理

public void addListener(TreeCacheListener listener)Add a change listener
Parameters:
listener - the listener
@Slf4j
public class TreeCacheTest extends AbstractCuratorTest{public static final String TREE_CACHE="/tree-path";@Testpublic void testTreeCache() throws Exception {createIfNeed(TREE_CACHE);TreeCache treeCache = new TreeCache(curatorFramework, TREE_CACHE);treeCache.getListenable().addListener(new TreeCacheListener() {@Overridepublic void childEvent(CuratorFramework client, TreeCacheEvent event) throws Exception {log.info(" tree cache: {}",event);}});treeCache.start();}
}

2、 Zookeeper在分布式命名服务中的实战

命名服务是为系统中的资源提供标识能力。ZooKeeper的命名服务主要是利用ZooKeeper节点的树形分层结构和子节点的顺序维护能力,来为分布式系统中的资源命名。
哪些应用场景需要用到分布式命名服务呢?典型的有:

  • 分布式API目录
  • 分布式节点命名
  • 分布式ID生成器

2.1、 分布式API目录

为分布式系统中各种API接口服务的名称、链接地址,提供类似JNDI(Java命名和目录接口)中的文件系统的功能。借助于ZooKeeper的树形分层结构就能提供分布式的API调用功能。
著名的Dubbo分布式框架就是应用了ZooKeeper的分布式的JNDI功能。在Dubbo中,使用ZooKeeper维护的全局服务接口API的地址列表。大致的思路为:

  • 服务提供者(Service Provider)在启动的时候,向ZooKeeper上的指定节点/dubbo/${serviceName}/providers写入自己的API地址,这个操作就相当于服务的公开。
  • 服务消费者(Consumer)启动的时候,订阅节点/dubbo/{serviceName}/providers下的服务提供者的URL地址,获得所有服务提供者的API。

在这里插入图片描述

2.2、 分布式节点的命名

一个分布式系统通常会由很多的节点组成,节点的数量不是固定的,而是不断动态变化的。比如说,当业务不断膨胀和流量洪峰到来时,大量的节点可能会动态加入到集群中。而一旦流量洪峰过去了,就需要下线大量的节点。再比如说,由于机器或者网络的原因,一些节点会主动离开集群。
如何为大量的动态节点命名呢?一种简单的办法是可以通过配置文件,手动为每一个节点命名。但是,如果节点数据量太大,或者说变动频繁,手动命名则是不现实的,这就需要用到分布式节点的命名服务。
可用于生成集群节点的编号的方案:
(1)使用数据库的自增ID特性,用数据表存储机器的MAC地址或者IP来维护。
(2)使用ZooKeeper持久顺序节点的顺序特性来维护节点的NodeId编号。
在第2种方案中,集群节点命名服务的基本流程是:

  • 启动节点服务,连接ZooKeeper,检查命名服务根节点是否存在,如果不存在,就创建系统的根节点。
  • 在根节点下创建一个临时顺序ZNode节点,取回ZNode的编号把它作为分布式系统中节点的NODEID。
  • 如果临时节点太多,可以根据需要删除临时顺序ZNode节点。

2.3、 分布式的ID生成器

在分布式系统中,分布式ID生成器的使用场景非常之多:

  • 大量的数据记录,需要分布式ID。
  • 大量的系统消息,需要分布式ID。
  • 大量的请求日志,如restful的操作记录,需要唯一标识,以便进行后续的用户行为分析和调用链路分析。
  • 分布式节点的命名服务,往往也需要分布式ID。

传统的数据库自增主键已经不能满足需求。在分布式系统环境中,迫切需要一种全新的唯一ID系统,这种系统需要满足以下需求:
(1)全局唯一:不能出现重复ID。
(2)高可用:ID生成系统是基础系统,被许多关键系统调用,一旦宕机,就会造成严重影响。

有哪些分布式的ID生成器方案呢?大致如下:
1.Java的UUID。
2.分布式缓存Redis生成ID:利用Redis的原子操作INCR和INCRBY,生成全局唯一的ID。
3.Twitter的SnowFlake算法。
4.ZooKeeper生成ID:利用ZooKeeper的顺序节点,生成全局唯一的ID。
5.MongoDb的ObjectId:MongoDB是一个分布式的非结构化NoSQL数据库,每插入一条记录会自动生成全局唯一的一个“_id”字段值,它是一个12字节的字符串,可以作为分布式系统中全局唯一的ID。
基于Zookeeper实现分布式ID生成器
在ZooKeeper节点的四种类型中,其中有以下两种类型具备自动编号的能力

  • PERSISTENT_SEQUENTIAL持久化顺序节点。
  • EPHEMERAL_SEQUENTIAL临时顺序节点。

ZooKeeper的每一个节点都会为它的第一级子节点维护一份顺序编号,会记录每个子节点创建的先后顺序,这个顺序编号是分布式同步的,也是全局唯一的。
可以通过创建ZooKeeper的临时顺序节点的方法,生成全局唯一的ID

@Slf4j
public class IDMaker extends CuratorBaseOperations {private String createSeqNode(String pathPefix) throws Exception {CuratorFramework curatorFramework = getCuratorFramework();//创建一个临时顺序节点String destPath = curatorFramework.create().creatingParentsIfNeeded().withMode(CreateMode.EPHEMERAL_SEQUENTIAL).forPath(pathPefix);return destPath;}public String  makeId(String path) throws Exception {String str = createSeqNode(path);if(null != str){//获取末尾的序号int index = str.lastIndexOf(path);if(index>=0){index+=path.length();return index<=str.length() ? str.substring(index):"";}}return str;}
}

测试

@Test
public void testMarkId() throws Exception {IDMaker idMaker = new IDMaker();idMaker.init();String pathPrefix = "/idmarker/id-";for(int i=0;i<5;i++){new Thread(()->{for (int j=0;j<10;j++){String id = null;try {id = idMaker.makeId(pathPrefix);log.info("{}线程第{}个创建的id为{}",Thread.currentThread().getName(),j,id);} catch (Exception e) {e.printStackTrace();}}},"thread"+i).start();}Thread.sleep(Integer.MAX_VALUE);}

基于Zookeeper实现SnowFlakeID算法
Twitter(推特)的SnowFlake算法是一种著名的分布式服务器用户ID生成算法。SnowFlake算法所生成的ID是一个64bit的长整型数字,如图10-2所示。这个64bit被划分成四个部分,其中后面三个部分分别表示时间戳、工作机器ID、序列号。
在这里插入图片描述
SnowFlakeID的四个部分,具体介绍如下:
(1)第一位 占用1 bit,其值始终是0,没有实际作用。
(2)时间戳 占用41 bit,精确到毫秒,总共可以容纳约69年的时间。
(3)工作机器id占用10 bit,最多可以容纳1024个节点。
(4)序列号 占用12 bit。这个值在同一毫秒同一节点上从0开始不断累加,最多可以累加到4095。
在工作节点达到1024顶配的场景下,SnowFlake算法在同一毫秒最多可以生成的ID数量为: 1024 * 4096 =4194304,在绝大多数并发场景下都是够用的。

SnowFlake算法的优点:

  • 生成ID时不依赖于数据库,完全在内存生成,高性能和高可用性。
  • 容量大,每秒可生成几百万个ID。
  • ID呈趋势递增,后续插入数据库的索引树时,性能较高。
    SnowFlake算法的缺点:
  • 依赖于系统时钟的一致性,如果某台机器的系统时钟回拨了,有可能造成ID冲突,或者ID乱序。
  • 在启动之前,如果这台机器的系统时间回拨过,那么有可能出现ID重复的危险。
    基于zookeeper实现雪花算法:
public class SnowflakeIdGenerator {/*** 单例*/public static SnowflakeIdGenerator instance =new SnowflakeIdGenerator();/*** 初始化单例** @param workerId 节点Id,最大8091* @return the 单例*/public synchronized void init(long workerId) {if (workerId > MAX_WORKER_ID) {// zk分配的workerId过大throw new IllegalArgumentException("woker Id wrong: " + workerId);}instance.workerId = workerId;}private SnowflakeIdGenerator() {}/*** 开始使用该算法的时间为: 2017-01-01 00:00:00*/private static final long START_TIME = 1483200000000L;/*** worker id 的bit数,最多支持8192个节点*/private static final int WORKER_ID_BITS = 13;/*** 序列号,支持单节点最高每毫秒的最大ID数1024*/private final static int SEQUENCE_BITS = 10;/*** 最大的 worker id ,8091* -1 的补码(二进制全1)右移13位, 然后取反*/private final static long MAX_WORKER_ID = ~(-1L << WORKER_ID_BITS);/*** 最大的序列号,1023* -1 的补码(二进制全1)右移10位, 然后取反*/private final static long MAX_SEQUENCE = ~(-1L << SEQUENCE_BITS);/*** worker 节点编号的移位*/private final static long WORKER_ID_SHIFT = SEQUENCE_BITS;/*** 时间戳的移位*/private final static long TIMESTAMP_LEFT_SHIFT = WORKER_ID_BITS + SEQUENCE_BITS;/*** 该项目的worker 节点 id*/private long workerId;/*** 上次生成ID的时间戳*/private long lastTimestamp = -1L;/*** 当前毫秒生成的序列*/private long sequence = 0L;/*** Next id long.** @return the nextId*/public Long nextId() {return generateId();}/*** 生成唯一id的具体实现*/private synchronized long generateId() {long current = System.currentTimeMillis();if (current < lastTimestamp) {// 如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过,出现问题返回-1return -1;}if (current == lastTimestamp) {// 如果当前生成id的时间还是上次的时间,那么对sequence序列号进行+1sequence = (sequence + 1) & MAX_SEQUENCE;if (sequence == MAX_SEQUENCE) {// 当前毫秒生成的序列数已经大于最大值,那么阻塞到下一个毫秒再获取新的时间戳current = this.nextMs(lastTimestamp);}} else {// 当前的时间戳已经是下一个毫秒sequence = 0L;}// 更新上次生成id的时间戳lastTimestamp = current;// 进行移位操作生成int64的唯一ID//时间戳右移动23位long time = (current - START_TIME) << TIMESTAMP_LEFT_SHIFT;//workerId 右移动10位long workerId = this.workerId << WORKER_ID_SHIFT;return time | workerId | sequence;}/*** 阻塞到下一个毫秒*/private long nextMs(long timeStamp) {long current = System.currentTimeMillis();while (current <= timeStamp) {current = System.currentTimeMillis();}return current;}
}

3、Zookeeper实现分布式队列

常见的消息队列有:RabbitMQ,RocketMQ,Kafka等。Zookeeper作为一个分布式的小文件管理系统,同样能实现简单的队列功能。Zookeeper不适合大数据量存储,官方并不推荐作为队列使用,但由于实现简单,集群搭建较为便利,因此在一些吞吐量不高的小型系统中还是比较好用的。

3.1、 设计思路

在这里插入图片描述
undefined.创建队列根节点:在Zookeeper中创建一个持久节点,用作队列的根节点。所有队列元素的节点将放在这个根节点下。
2.实现入队操作:当需要将一个元素添加到队列时,可以在队列的根节点下创建一个临时有序节点。节点的数据可以包含队列元素的信息。
3.实现出队操作:当需要从队列中取出一个元素时,可以执行以下操作:

  • 获取根节点下的所有子节点。
  • 找到具有最小序号的子节点。
  • 获取该节点的数据。
  • 删除该节点。
  • 返回节点的数据。
/*** 入队* @param data* @throws Exception*/
public void enqueue(String data) throws Exception {// 创建临时有序子节点zk.create(QUEUE_ROOT + "/queue-", data.getBytes(StandardCharsets.UTF_8),ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);
}/*** 出队* @return* @throws Exception*/
public String dequeue() throws Exception {while (true) {List<String> children = zk.getChildren(QUEUE_ROOT, false);if (children.isEmpty()) {return null;}Collections.sort(children);for (String child : children) {String childPath = QUEUE_ROOT + "/" + child;try {byte[] data = zk.getData(childPath, false, null);zk.delete(childPath, -1);return new String(data, StandardCharsets.UTF_8);} catch (KeeperException.NoNodeException e) {// 节点已被其他消费者删除,尝试下一个节点}}}
}

3.2、 使用Apache Curator实现分布式队列

Apache Curator是一个ZooKeeper客户端的封装库,提供了许多高级功能,包括分布式队列。

public class CuratorDistributedQueueDemo {private static final String QUEUE_ROOT = "/curator_distributed_queue";public static void main(String[] args) throws Exception {CuratorFramework client = CuratorFrameworkFactory.newClient("localhost:2181",new ExponentialBackoffRetry(1000, 3));client.start();// 定义队列序列化和反序列化QueueSerializer<String> serializer = new QueueSerializer<String>() {@Overridepublic byte[] serialize(String item) {return item.getBytes();}@Overridepublic String deserialize(byte[] bytes) {return new String(bytes);}};// 定义队列消费者QueueConsumer<String> consumer = new QueueConsumer<String>() {@Overridepublic void consumeMessage(String message) throws Exception {System.out.println("消费消息: " + message);}@Overridepublic void stateChanged(CuratorFramework curatorFramework, ConnectionState connectionState) {}};// 创建分布式队列DistributedQueue<String> queue = QueueBuilder.builder(client, consumer, serializer, QUEUE_ROOT).buildQueue();queue.start();// 生产消息for (int i = 0; i < 5; i++) {String message = "Task-" + i;System.out.println("生产消息: " + message);queue.put(message);Thread.sleep(1000);}Thread.sleep(10000);queue.close();client.close();}
}

3.3、 注意事项

使用Curator的DistributedQueue时,默认情况下不使用锁。当调用QueueBuilder的lockPath()方法并指定一个锁节点路径时,才会启用锁。如果不指定锁节点路径,那么队列操作可能会受到并发问题的影响。
在创建分布式队列时,指定一个锁节点路径可以帮助确保队列操作的原子性和顺序性。分布式环境中,多个消费者可能同时尝试消费队列中的消息。如果不使用锁来同步这些操作,可能会导致消息被多次处理或者处理顺序出现混乱。当然,并非所有场景都需要指定锁节点路径。如果您的应用场景允许消息被多次处理,或者处理顺序不是关键问题,那么可以不使用锁。这样可以提高队列操作的性能,因为不再需要等待获取锁。

// 创建分布式队列
QueueBuilder<String> builder = QueueBuilder.builder(client, consumer, serializer, "/order");
//指定了一个锁节点路径/orderlock,用于实现分布式锁,以保证队列操作的原子性和顺序性。
queue = builder.lockPath("/orderlock").buildQueue();
//启动队列,这时队列开始监听ZooKeeper中/order节点下的消息。
queue.start();

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/150303.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Springboot学生成绩管理系统idea开发mysql数据库web结构java编程计算机网页源码maven项目

一、源码特点 springboot 学生成绩管理系统是一套完善的信息系统&#xff0c;结合springboot框架和bootstrap完成本系统&#xff0c;对理解JSP java编程开发语言有帮助系统采用springboot框架&#xff08;MVC模式开发&#xff09;&#xff0c;系统 具有完整的源代码和数据库&…

Android:实现手机前后摄像头预览同开

效果展示 一.概述 本博文讲解如何实现手机前后两颗摄像头同时预览并显示 我之前博文《OpenGLES&#xff1a;GLSurfaceView实现Android Camera预览》对单颗摄像头预览做过详细讲解&#xff0c;而前后双摄实现原理其实也并不复杂&#xff0c;粗糙点说就是把单摄像头预览流程写两…

TikTok环保运动:短视频平台上的可持续发展

在当今社交媒体的繁荣时代&#xff0c;TikTok已经成为全球范围内年轻一代最喜爱的短视频分享平台之一。 数以亿计的用户在这里分享他们的创造力、生活片段和喜好。然而&#xff0c;随着全球环保意识的不断增强&#xff0c;TikTok也成为了一个独特的环境&#xff0c;倡导可持续…

Node-RED系列教程-25node-red获取天气

安装节点:node-red-contrib-weather 节点图标如下: 使用说明:node-red-contrib-weather (node) - Node-RED 流程图中填写经度和纬度即可。 演示: json内容: {

【重磅】这就是元宇宙碰撞的后果

筹备了一年多——朋友们&#xff0c;它终于来了&#xff01; 我们刚刚宣布官方 Aavegotchi x Sandbox 在 X 上共享元宇宙体验。 10 月 25 日在 The Sandbox 上线&#xff0c;有两份可领取的空投。 Gotchi 游戏即将爆发。你们兴奋吗&#xff1f;

氟化钡镜片

氟化钡晶体具有良好的光学透过性能&#xff0c;在0.15μm-14.5μm的光谱范围内&#xff0c;可以用作紫外和红外光学窗口。同时&#xff0c;又具有优良的闪烁性能&#xff0c;成为高能物理与核物理、核医学等领域中重要的晶体材料。 特此记录 anlog 2023年10月7日

Linux 逻辑卷

目录 一、认识 1、概念 2、术语&#xff1a; 1&#xff09;物理存储设备 2&#xff09;物理卷 3&#xff09;卷组 4&#xff09;PE物理区域 5&#xff09;逻辑卷 6&#xff09;LE逻辑区域 7&#xff09;VGDA卷组描述符区域 二、部署逻辑卷 1、物理卷管理 2、卷组…

防御安全第五次作业

1. 什么是数据认证&#xff0c;有什么作用&#xff0c;有哪些实现的技术手段&#xff1f; 数据认证是指保证数据的真实性、完整性和可信度&#xff0c;以确保数据不被篡改或伪造。其作用包括但不限于&#xff1a; 保护关键数据不被恶意篡改或损坏 提供数据来源的可靠性和安全性…

E: Unable to locate package XXX

问题描述&#xff1a; 当使用 apt-get install XXX 安装包时&#xff0c;出现错误 E: Unable to locate package XXX 解决方法&#xff1a; apt-get update apt-get install XXX

为什么append到父节点后的子节点发生修改,父节点打印出来的也会变化

今天走查前端代码&#xff0c;发现历史代码写出来的不规范&#xff0c;但是他还是在生产运行了很久的代码&#xff0c;仔细思量后发现&#xff0c;其实原理是对的&#xff0c;只是看起来不美观&#xff0c;不易读而已。 废话不说&#xff0c;先上demo代码 <!DOCTYPE html&g…

【Spring Boot】创建一个 Spring Boot 项目

创建一个 Spring Boot 项目 1. 安装插件2. 创建 Spring Boot 项目3. 项目目录介绍和运行注意事项 1. 安装插件 IDEA 中安装 Spring Boot Helper / Spring Assistant / Spring Initializr and Assistant插件才能创建 Spring Boot 项⽬ &#xff08;有时候不用安装&#xff0c;直…

维修派单系统好用吗?如何实现数字化后勤管理?

在当今社会&#xff0c;各种设备和设施的正常运转对于单位和组织来说至关重要。然而&#xff0c;由于各种因素的影响&#xff0c;设备和设施在日常运行过程中难免会出现故障。这时&#xff0c;高效的维修服务就显得尤为重要。而“的修”维修派单系统&#xff0c;就是一种专为维…

2023八股每日一题(九月份)

文章目录 9月13日【JDK、JRE、JVM之间的区别】9月14日【什么是面向对象&#xff1f;】9月15日【和equals比较】9月16日【final 关键字的作用】9月17日【String、StringBuffer、StringBuilder】9月18日【重载和重写的区别】9月19日【接口和抽象类的区别】9月20日【List和Set的区…

力扣第572题 另一棵树的子树 c++深度(DFS)注释版

题目 572. 另一棵树的子树 简单 给你两棵二叉树 root 和 subRoot 。检验 root 中是否包含和 subRoot 具有相同结构和节点值的子树。如果存在&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 二叉树 tree 的一棵子树包括 tree 的某个节点和这个节点的所有…

数据挖掘(3)特征化

从数据分析角度&#xff0c;DM分为两类&#xff0c;描述式数据挖掘&#xff0c;预测式数据挖掘。描述式数据挖掘是以简介概要的方式描述数据&#xff0c;并提供数据的一般性质。预测式数据挖掘分析数据建立模型并试图预测新数据集的行为。 DM的分类&#xff1a; 描述式DM&#…

为什么企业都在申报“高新技术”?有以下十大好处!

随着信息技术时代的迅速发展&#xff0c;很多企业为了能够在同行中脱颖而出&#xff0c;都会选择办理一些和企业相关的资质证书&#xff0c;以便提升企业的核心竞争力&#xff0c;今天同邦信息科技的小编就告诉大家为什么那么多企业都选择申报“高新技术”企业&#xff1f; 首先…

Cocos Creator3.8 项目实战(四)巧用九宫格图像拉伸

一、为什么要使用九宫格图像拉伸 相信做过前端的同学都知道&#xff0c;ui &#xff08;图片&#xff09;资源对包体大小和内存都有非常直接的影响。 通常ui 资源都是图片&#xff0c;也是最占资源量的资源类型&#xff0c;游戏中的ui 资源还是人机交互的最重要的部分&#xff…

若依分离版-前端使用

1 执行 npm install --registryhttps://registry.npm.taobao.org&#xff0c;报错信息如下 npm ERR! code ERESOLVE npm ERR! ERESOLVE unable to resolve dependency tree npm ERR! npm ERR! While resolving: ktg-mes-ui3.8.2 npm ERR! Found: vue2.6.12 npm ERR! node_modu…

张量-规约计算

作为Tensorflow中常见的一种计算方式,规约计算在操作时会有降维的功能。在所有规约计算系列的操作函数中,都是以reduce开头来命名,以函数名所命名的手段来降维。 每个函数都有axis参数,即沿哪个方向使用函数名所命名的方法对输入的tensor进行降维。axis的默认值是None,即把inp…

Ubuntu 2204 搭建 nextcloud 个人网盘

Nextcloud是一套用于创建网络硬盘/云盘以存放文件的客户端-服务器软件&#xff0c;Nextcloud 完全开源并且免费。 一、搭建 ubuntu apache2 mysql php &#xff08;lamp&#xff09;环境 因为 nextcloud 服务是使用 php 语言和 mysql 数据库的web服务&#xff0c;因此需要…