想要精通算法和SQL的成长之路 - 并查集的运用
- 前言
- 一. 并查集的使用和模板
- 1.1 初始化
- 1.2 find 查找函数
- 1.3 union 合并集合
- 1.4 connected 判断相连性
- 1.5 完整代码
- 二. 运用案例 - 省份数量
前言
想要精通算法和SQL的成长之路 - 系列导航
一. 并查集的使用和模板
先说一下并查集的相关知识点:
- 含义:并查集,用于维护一组不相交的集合,支持合并两个集合和查询某个元素所属的集合。
- 用途:解决图论、连通性问题和动态连通性等问题。
通俗一点,可以使用并查集的算法题目有哪些特征?
- 需要将
n
个不同的元素划分为不相交的集合。 - 开始的时候,每个元素自行成为一个集合,然后需要根据一定的顺序进行 合并。
- 同时还需要 查询 某个元素是否属于哪个集合。
因此并查集的基本操作可以包含两个:
- 合并:将两个不相交的集合合并成一个集合。(将其中一个集合的根节点连接到另一个集合的根节点上)
- 查找:根据某个元素,寻找到它所在集合的根节点。
1.1 初始化
首先我们考虑下,并查集里面需要有哪些数据结构:
- 需要一个
parent[]
数组,用来存储每个元素对应的根节点。 - 再来一个
rank[]
数组,代表以每个元素作为根节点,其所在集合的大小。即代表某个集合的深度。 - 再来一个
sum
字段,代表当前的集合个数。
public class UnionFind {/*** 表示节点i的父节点*/private int[] parent;/*** 表示以节点i为根节点的子树的深度,初始时每个节点的深度都为0*/private int[] rank;private int sum;public UnionFind(int n) {parent = new int[n];rank = new int[n];// 初始时每个节点的父节点都是它自己for (int i = 0; i < n; i++) {parent[i] = i;}sum = n;}
}
1.2 find 查找函数
特征:
- 入参:元素
x
。 - 要做的事情:不断地向上递归寻找这个
x
的根节点。 - 递归终止条件:找到根节点。(根节点和元素本身一致)
代码如下:
public int find(int x) {while (x != parent[x]) {x = parent[x];}return x;
}
1.3 union 合并集合
特征:
- 入参:元素
x
和y
。 - 要做的事情:分别找到这两个元素的根节点:
rootX
和rootY
。 - 如果俩元素的根节点是同一个,说明他们在一个集合当中,不需要任何操作。
- 倘若两个元素的根节点不一样,根据两个集合的深度来判断。将深度小的那个集合,合并到深度大的集合中。同时更新对应的根节点和深度大小。
除此之外,我们还可以写一个简单的函数,用来判断两个元素是否处于同一个集合当中(或者是是否相连)
public void union(int x, int y) {int rootX = find(x);int rootY = find(y);// 如果两个元素的根节点一致,不需要合并if (rootX == rootY) {return;}// 如果根节点 rootX 的深度 > rootY。if (rank[rootX] > rank[rootY]) {// 那么将以rootY作为根节点的集合加入到rootX对应的集合当中rank[rootX] += rank[rootY];// 同时改变rootY的根节点,指向rootX。parent[rootY] = rootX;} else {// 反之rank[rootY] += rank[rootX];parent[rootX] = rootY;}
}
1.4 connected 判断相连性
/*** 判断两个节点是否在同一个集合中
*/
public boolean connected(int x, int y) {return find(x) == find(y);
}
1.5 完整代码
/*** @author Zong0915* @date 2023/10/4 下午2:52*/
public class UnionFind {/*** 表示节点i的父节点*/private int[] parent;/*** 表示以节点i为根节点的子树的深度,初始时每个节点的深度都为0*/private int[] rank;private int sum;public UnionFind(int n) {parent = new int[n];rank = new int[n];// 初始时每个节点的父节点都是它自己for (int i = 0; i < n; i++) {parent[i] = i;}sum = n;}public int find(int x) {while (x != parent[x]) {x = parent[x];}return x;}public void union(int x, int y) {int rootX = find(x);int rootY = find(y);// 如果两个元素的根节点一致,不需要合并if (rootX == rootY) {return;}// 如果根节点 rootX 的深度 > rootY。if (rank[rootX] > rank[rootY]) {// 那么将以rootY作为根节点的集合加入到rootX对应的集合当中rank[rootX] += rank[rootY];// 同时改变rootY的根节点,指向rootX。parent[rootY] = rootX;} else {// 反之rank[rootY] += rank[rootX];parent[rootX] = rootY;}}/*** 判断两个节点是否在同一个集合中*/public boolean connected(int x, int y) {return find(x) == find(y);}
}
二. 运用案例 - 省份数量
原题链接
我们在并查集模板的基础上进行改造:
class UnionFind {private int[] rank;// 每个省份具有的城市数量private int[] parent;// 每个城市对应的根节点(省份)private int sum;// 省份的数量public UnionFind(int[][] isConnected) {int len = isConnected.length;// 初始化,省份数量和提供的城市数量一致sum = len;// 每个集合具有的城市数量为1rank = new int[len];parent = new int[len];Arrays.fill(rank, 1);// 根节点指向自己for (int i = 0; i < len; i++) {parent[i] = i;}}public int find(int x) {while (x != parent[x]) {x = parent[x];}return x;}public void union(int x, int y) {int rootX = find(x);int rootY = find(y);// 如果两个元素的根节点一致,不需要合并if (rootX == rootY) {return;}// 如果根节点 rootX 的深度 > rootY。if (rank[rootX] > rank[rootY]) {// 那么将以rootY作为根节点的集合加入到rootX对应的集合当中rank[rootX] += rank[rootY];// 同时改变rootY的根节点,指向rootX。parent[rootY] = rootX;} else {// 反之rank[rootY] += rank[rootX];parent[rootX] = rootY;}// 合并成功,那么总集合数量要减1sum--;}
}
不过本题目当中,对于rank
这个属性没有什么作用,最终看的是sum属性
。因此大家可以把这个属性相关的给去除。
最后来看代码部分:
public int findCircleNum(int[][] isConnected) {// 初始化构造UnionFind unionFind = new UnionFind(isConnected);int len1 = isConnected.length;int len2 = isConnected[0].length;for (int i = 0; i < len1; i++) {for (int j = 0; j < len2; j++) {// 如果是相连的,那么将城市 i 和 j 合并if (isConnected[i][j] == 1) {unionFind.union(i, j);}}}// 最后返回集合个数(即省份的个数)return unionFind.sum;
}
最终代码如下:
public class Test547 {public int findCircleNum(int[][] isConnected) {UnionFind unionFind = new UnionFind(isConnected);int len1 = isConnected.length;int len2 = isConnected[0].length;for (int i = 0; i < len1; i++) {for (int j = 0; j < len2; j++) {// 如果是相连的,那么将城市 i 和 j 合并if (isConnected[i][j] == 1) {unionFind.union(i, j);}}}return unionFind.sum;}class UnionFind {private int[] rank;// 每个省份具有的城市数量private int[] parent;// 每个城市对应的根节点(省份)private int sum;// 省份的数量public UnionFind(int[][] isConnected) {int len = isConnected.length;// 初始化,省份数量和提供的城市数量一致sum = len;// 每个集合具有的城市数量为1rank = new int[len];parent = new int[len];Arrays.fill(rank, 1);// 根节点指向自己for (int i = 0; i < len; i++) {parent[i] = i;}}public int find(int x) {while (x != parent[x]) {x = parent[x];}return x;}public void union(int x, int y) {int rootX = find(x);int rootY = find(y);// 如果两个元素的根节点一致,不需要合并if (rootX == rootY) {return;}// 如果根节点 rootX 的深度 > rootY。if (rank[rootX] > rank[rootY]) {// 那么将以rootY作为根节点的集合加入到rootX对应的集合当中rank[rootX] += rank[rootY];// 同时改变rootY的根节点,指向rootX。parent[rootY] = rootX;} else {// 反之rank[rootY] += rank[rootX];parent[rootX] = rootY;}sum--;}}
}