机器学习:决策树

决策树

决策树是一种基于树形结构的模型,决策树从根节点开始,一步步走到叶子节点(决策),所有的数据最终都会落到叶子节点,既可以做分类也可以做回归。
在这里插入图片描述

特征选择

根节点的选择该用哪一个特征呢?接下来的节点呢?我们的目标是根节点就像大当家一样可以更好的决策数据,根节点下面的节点自然是二当家,以此类推下去。所以需要找到一种衡量标准,来计算通过不同特征进行分支选择后的分类情况,找出最好的个当成根节点,以此类推。

1.信息增益

首先介绍一下熵的概念:熵是表示随机变量不确定性的度量。其实就是集合的混乱程度。举个例子,A集合[1,1,1,1,1,1,1,2,2],B集合[1,2,3,4,5,6,7,8,9],显然A集合的熵值要低,因为A里面只有两种类别,相对稳定稳定一些,B中种类很多,熵值就会大很多。计算公式如下:其中 D 表示样本集, K 表示样本集分类数,pk表示第 k 类样本在样本集所占比例。Ent(D) 的值越小,样本集的纯度越高。

在这里插入图片描述

下式表示用一个离散属性划分后对样本集的影响,被称为信息增益(Information Gain),其中 D 表示样本集,a 表示离散属性,V 表示离散属性 a 所有可能取值的数量,Dv表示样本集中第v种取值的子样本集。

在这里插入图片描述
当属性是连续属性时,其可取值不像离散属性那样是有限的,这时可以将连续属性在样本集中的值排序后俩俩取平均值作为划分点,如下式所示,其中 Ta表示平均值集合,Dtv表示子集合,当 v = - 时表示样本中小于均值 t 的样本子集,当 v = + 时表示样本中大于均值t的样本子集,取划分点中最大的信息增益作为该属性的信息增益值。

在这里插入图片描述

Gain(D, a) 的值越大,样本集按该属性划分后纯度的提升越高。由此可找到最合适的划分属性。

在这里插入图片描述

2.基尼系数

介绍一下基尼值,如下式所示,其中 D 表示样本集, K 表示样本集分类数,pk表示第 k 类样本在样本集所占比例。Gini(D) 的值越小,样本集的纯度越高。

在这里插入图片描述

下式表示用一个离散属性划分后对样本集的影响,被称为基尼指数(Gini Index),其中 D 表示样本集,a 表示离散属性,V 表示离散属性 a 所有可能取值的数量,Dv表示样本集中第 v 种取值的子样本集。

在这里插入图片描述
对于连续属性,将连续属性排序后俩俩取平均值作为划分点,如下式,其中 Ta表示平均值集合,Dtv表示子集合,当 v = - 时表示样本中小于均值 t 的样本子集,当 v = + 时表示样本中大于均值 t 的样本子集,取划分点中最小的基尼指数作为该属性的基尼指数值。

在这里插入图片描述
Gini_index(D, a) 的值越小,样本集按该离散属性划分后纯度的提升越高。由此可找到最合适的划分属性。

在这里插入图片描述

3.均方误差

前面两种指标使得决策树可以用来做分类问题,那么决策树如果用来做回归问题时,就需要不同的指标来决定划分的特征,这个指标就是如下式所示的均方误差(MSE),其中 Ta表示平均值集合,ytv表示子集合标签,当 v = - 时表示样本中小于均值 t 的样本子集标签,当 v = + 时表示样本中大于均值 t 的样本子集标签,后一项为对应子集合标签的均值。

在这里插入图片描述
MSE(D, a) 的值越小,决策树对样本集的拟合程度越高。由此可找到最合适的划分属性。

在这里插入图片描述

决策树剪枝策略

决策树剪枝的效果可以在以下几个方面体现:

防止过拟合,提高模型的泛化能力:剪枝可以减少决策树的复杂性,避免过度拟合训练数据。剪枝可以降低决策树的复杂度,使其更具有泛化能力。剪枝后的树更加简单,去除了过多的冗余信息和噪声,更能捕捉数据中的一般规律,而不是过多关注个别训练样本的特异性。

减少决策树的复杂度:剪枝可以通过减少决策树的叶子节点数量和分支数量来简化模型。简化后的决策树更易于理解和解释,并且可以减少计算和存储的需求。

提高模型的可解释性:剪枝后的决策树更为简洁,更容易理解和解释。剪枝可以去除决策树中的一些不必要的细节和分支,使决策过程更加清晰明了。

1.预剪枝

边建立决策树边剪枝,限制深度,叶子节点个数,叶子节点样本数,信息增益量等。

2.后剪枝

建立决策树后再进行剪枝,通过一定的衡量标准进行剪枝。叶子节点越多,损失越大。

在这里插入图片描述

决策树实现

from sklearn import treeimport os
import pandas as pd
import numpy as np
import sklearn
import xgboost as xgbfrom utils.features import *import warnings
warnings.filterwarnings("ignore")def load_datasets():pd.set_option('display.max_columns', 1000)pd.set_option('display.width', 1000)pd.set_option('display.max_colwidth', 1000)df = pd.read_pickle('****.pickle')features = darshan_featuresprint(df.head(10))df_train, df_test = sklearn.model_selection.train_test_split(df, test_size=0.2)X_train, X_test = df_train[features], df_test[features]print(X_test)y_train, y_test = df_train["value"], df_test["value"]print(y_test)return X_train, X_test, y_train, y_testdef model_train(X_train, X_test, y_train, y_test):# 决策树回归clf = tree.DecisionTreeRegressor()# 拟合数据clf = clf.fit(X_train, y_train)y_pred_test = clf.predict(X_test)print(y_test)print(y_pred_test)error = np.median(10 ** np.abs(y_test - y_pred_test))print(error)def main():X_train, X_test, y_train, y_test = load_datasets()model_train(X_train, X_test, y_train, y_test)if __name__ == "__main__":main()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/151476.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【单元测试】如何使用 JUnit5 框架?

JUnit5 单元测试框架使用教程 一、Junit5 是什么? Junit5是一个用于在Java平台上进行单元测试的框架。JUnit 5 框架主要由三部分组成:JUnit Platform、JUnit Jupiter 和 JUnit Vintage。 JUnit Platform:定义了测试引擎的 API,是…

软考程序员考试大纲(2023)

文章目录 前言一、考试说明1.考试目标2.考试要求3.考试科目设置 二、考试范围考试科目1:计算机与软件工程基本知识1.计算机科学基础2.计算机系统基础知识3.系统开发和运行知识4.网络与信息安全基础知识5&am…

pnpm、npm、yarn 包管理工具『优劣对比』及『环境迁移』

前言 博主在开发前端网站的时候,发现随着开发的项目的逐渐增多,安装的依赖包越来越臃肿,依赖包的安装速度也是非常越来越慢,多项目开发管理也是比较麻烦。之前我就了解过 pnpm,但是当时担心更换包管理环境可能会出现的…

十、2023.10.4.计算机网络(one).10

文章目录 1、简述静态路由和动态路由?2、说说有哪些路由协议,都是如何更新的?3、简述域名解析过程,本机如何干预域名解析?4、简述 DNS 查询服务器的基本流程是什么?DNS 劫持是什么?5、简述网关的…

FFmpeg 基础模块:容器相关的 API 操作

目录 AVFormat 模块 AVFormat 前处理部分 AVFormat 读写处理部分 小结 思考 FFmpeg 目录中包含了 FFmpeg 库代码目录、构建工程目录、自测子系统目录等,具体内容如下: 现在你知道 FFmpeg 的源代码目录中都包含了哪些内容,在之后使用 FFm…

FFmpeg日志系统、文件与目录、操作目录

目录 FFmpeg日志系统 FFmpeg文件与目录操作 FFmpeg文件的删除与重命名 FFmpeg操作目录及list的实现 操作目录重要函数 操作目录重要结构体 FFmpeg日志系统 下面看一个简单的 demo。 #include <stdio.h> #include <libavutil/log.h>int main(int argc,char* …

多头注意力机制

1、什么是多头注意力机制 从多头注意力的结构图中&#xff0c;貌似这个所谓的多个头就是指多组线性变换&#xff0c;但是并不是&#xff0c;只使用了一组线性变换层&#xff0c;即三个变换张量对 Q、K、V 分别进行线性变换&#xff0c;这些变化不会改变原有张量的尺寸&#xf…

【Vue面试题十一】、Vue组件之间的通信方式都有哪些?

文章底部有个人公众号&#xff1a;热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享&#xff1f; 踩过的坑没必要让别人在再踩&#xff0c;自己复盘也能加深记忆。利己利人、所谓双赢。 面试官&#xff1a;Vue组件之间的通信方式都…

浅谈CDN内容分发与全局负载均衡

CDN简介 CDN的全称是Content Delivery Network&#xff0c;即内容分发网络。CDN是构建在现有网络基础之上的智能虚拟网络&#xff0c;依靠部署在各地的边缘服务器&#xff0c;通过中心平台的负载均衡、内容分发、调度等功能模块&#xff0c;使用户就近获取所需内容&#xff0c…

C语言学生成绩录入系统

一、系统概述 该系统是一个由链表创建主菜单的框架&#xff0c;旨在快速创建学生成绩录入系统的主菜单结构。其主要任务包括&#xff1a; 实现链表的创建、插入和遍历功能&#xff0c;用于存储和展示学生成绩录入系统各个模块的菜单项。 2. 提供用户友好的主菜单界面&#xf…

【回顾一下Docker的基本用法】

文章目录 回顾一下Docker的基本用法1.初识Docker1.1.什么是Docker1.1.1.应用部署的环境问题1.1.2.Docker解决依赖兼容问题1.1.3.Docker解决操作系统环境差异1.1.4.小结 1.2.Docker和虚拟机的区别1.3.Docker架构1.3.1.镜像和容器1.3.2.DockerHub1.3.3.Docker架构1.3.4.小结 1.4.…

CSS小计

1&#xff1a;设置图片随窗缩放 使用百分比 width: 100%;height: 100%; 使用vmin: 将可视区域分为100vmin width: 100vmin;height: 100vmin; 2:设置字体颜色与背景色融合 mix-blend-mode: difference 3: 设置宽度自适应 width:fit-content 4:外边距合并 当两个相领的两个容…

Git 学习笔记 | 使用码云

Git 学习笔记 | 使用码云 Git 学习笔记 | 使用码云注册登录码云&#xff0c;完善个人信息设置本机绑定SSH公钥&#xff0c;实现免密码登录创建远程仓库 Git 学习笔记 | 使用码云 注册登录码云&#xff0c;完善个人信息 网址&#xff1a;https://gitee.com/ 可以使用微信&…

RT-Thread 内存管理(学习二)

内存堆管理应用示例 这是一个内存堆的应用示例&#xff0c;这个程序会创建一个动态的线程&#xff0c;这个线程会动态申请内存并释放&#xff0c;每次申请更大的内存&#xff0c;当申请不到的时候就结束。 #include <rtthread.h>#define THREAD_PRIORITY 25 #defi…

机器学习之旅-从Python 开始

你想知道如何开始机器学习吗&#xff1f;在这篇文章中&#xff0c;我将简要概括一下使用 Python 来开始机器学习的一些步骤。Python 是一门流行的开源程序设计语言&#xff0c;也是在人工智能及其它相关科学领域中最常用的语言之一。机器学习简称 ML&#xff0c;是人工智能的一…

lv7 嵌入式开发-网络编程开发 08 TCP并发功能

目录 1 TCP 多进程并发 1.1 现象&#xff1a; 1.2 多进程并发 2 僵尸进程处理 3 TCP并发多线程 4 练习 1 TCP 多进程并发 1.1 现象&#xff1a; 之前的代码&#xff0c;先关服务端&#xff0c;再次打开会出现错误bind:Address already in use 使用setsockopt 地址快速重…

vuejs中使用axios时如何追加数据

前言 在vuejs中使用axios时&#xff0c;有时候需要追加数据,比如,移动端下拉触底加载,分页加载,滑动滚动条,等等,这时候就需要追加数据了,下面我们来演示下. 代码演示 <template><div><div><el-button type"primary" click"handleBtnGetJ…

【智能家居项目】裸机版本——设备子系统(LED Display 风扇)

&#x1f431;作者&#xff1a;一只大喵咪1201 &#x1f431;专栏&#xff1a;《智能家居项目》 &#x1f525;格言&#xff1a;你只管努力&#xff0c;剩下的交给时间&#xff01; 输入子系统中目前仅实现了按键输入&#xff0c;剩下的网络输入和标准输入在以后会逐步实现&am…

三十二、【进阶】hash索引结构

1、hash索引结构 &#xff08;1&#xff09;简述&#xff1a; hash索引&#xff0c;就是采用一定的hash算法&#xff0c;将键值换算成新的hash值&#xff0c;映射到对应的槽位上&#xff0c;然后存储在hash表中。 &#xff08;2&#xff09;图示&#xff1a; 2、hash索引结构…

阿里云服务器ECS详细介绍_云主机_服务器托管_弹性计算

阿里云服务器ECS英文全程Elastic Compute Service&#xff0c;云服务器ECS是一种安全可靠、弹性可伸缩的云计算服务&#xff0c;阿里云提供多种云服务器ECS实例规格&#xff0c;如经济型e实例、通用算力型u1、ECS计算型c7、通用型g7、GPU实例等&#xff0c;阿里云服务器网分享阿…