深度学习基础知识 nn.Sequential | nn.ModuleList | nn.ModuleDict

深度学习基础知识 nn.Sequential | nn.ModuleList | nn.ModuleDict

  • 1、nn.Sequential 、 nn.ModuleList 、 nn.ModuleDict 类都继承自 Module 类。
  • 2、nn.Sequential、nn.ModuleList 和 nn.ModuleDict语法
  • 3、Sequential 、ModuleDict、 ModuleList 的区别
  • 4、ModuleDict、 ModuleList 的区别
  • 5、nn.ModuleList 、 nn.ModuleDict 与 Python list、Dict 的区别

1、nn.Sequential 、 nn.ModuleList 、 nn.ModuleDict 类都继承自 Module 类。

2、nn.Sequential、nn.ModuleList 和 nn.ModuleDict语法

net = nn.Sequential(nn.Linear(32, 64), nn.ReLU()) →→只需要将定义的层按照顺序写入括号内就可以了

net = nn.ModuleList([nn.Linear(32, 6)4, nn.ReLU()]) →→在定义式需要加上中括号[],将定义的层写入到中括号内

net = nn.ModuleDict({‘linear’: nn.Linear(32, 64), ‘act’: nn.ReLU()}) →→需要大括号,将定义的层以键值对的形式写入

代码

import torch
import torch.nn as nnnet1 = nn.Sequential(nn.Linear(32, 64), nn.ReLU())
net2 = nn.ModuleList([nn.Linear(32, 64), nn.ReLU()])
net3 = nn.ModuleDict({'linear': nn.Linear(32, 64), 'act': nn.ReLU()})print(net1)
print(net2)
print(net3)

在这里插入图片描述

3、Sequential 、ModuleDict、 ModuleList 的区别

1、 ModuleList 仅仅是一个储存各种模块的列表,这些模块之间没有联系也没有顺序(所以不用保证相邻层的输入输出维度匹配),而且没有实现 forward 功能需要自己实现

2、和 ModuleList 一样, ModuleDict 实例仅仅是存放了一些模块的字典,并没有定义 forward 函数需要自己定义

3、而 Sequential 内的模块需要按照顺序排列,要保证相邻层的输入输出大小相匹配,内部 forward 功能已经实现,所以,直接如下写模型,是可以直接调用的,不再需要写forward,sequential 内部已经有 forward

代码:

import torch
import torch.nn as nnnet1 = nn.Sequential(nn.Linear(32, 64), nn.ReLU())
net2 = nn.ModuleList([nn.Linear(32, 64), nn.ReLU()])
net3 = nn.ModuleDict({'linear': nn.Linear(32, 64), 'act': nn.ReLU()})x = torch.randn(8, 3, 32)
print(net1(x).shape)    # 输出内容: torch.Size([8, 3, 64])
# print(net2(x).shape)  # 会报错,提示缺少forward
# print(net3(x).shape)   # 会报错,提示缺少forward

为 nn.ModuleList 写 forward 函数
代码:

import torch
import torch.nn as nnclass My_Model(nn.Module):def __init__(self):super(My_Model, self).__init__()self.layers = nn.ModuleList([nn.Linear(32, 64),nn.ReLU()])def forward(self, x):for layer in self.layers:x = layer(x)return xnet = My_Model()x = torch.randn(8, 3, 32)
out = net(x)
print(out.shape)

输出结果:
在这里插入图片描述
为 nn.ModuleDict 写 forward 函数

import torch
import torch.nn as nnclass My_Model(nn.Module):def __init__(self):super(My_Model, self).__init__()self.layers = nn.ModuleDict({'linear': nn.Linear(32, 64), 'act': nn.ReLU()})def forward(self, x):for layer in self.layers.values():x = layer(x)return xnet = My_Model()
x = torch.randn(8, 3, 32)
out = net(x)
print(out.shape)

将 nn.ModuleList 转换成 nn.Sequential

import torch
import torch.nn as nnmodule_list = nn.ModuleList([nn.Linear(32, 64), nn.ReLU()])
net = nn.Sequential(*module_list)
x = torch.randn(8, 3, 32)
print(net(x).shape)

输出如下:
在这里插入图片描述

将 nn.ModuleDict 转换成 nn.Sequential

import torch
import torch.nn as nnmodule_dict = nn.ModuleDict({'linear': nn.Linear(32, 64), 'act': nn.ReLU()})
net = nn.Sequential(*module_dict.values())
x = torch.randn(8, 3, 32)
print(net(x).shape)

输出如下:
在这里插入图片描述

4、ModuleDict、 ModuleList 的区别

1、ModuleDict 可以给每个层定义名字,ModuleList 不会
2、ModuleList 可以通过索引读取,并且使用 append 添加元素

import torch.nn as nnnet = nn.ModuleList([nn.Linear(32, 64), nn.ReLU()])
net.append(nn.Linear(64, 10))
print(net)

3、ModuleDict 可以通过 key 读取,并且可以像 字典一样添加元素

import torch.nn as nnnet = nn.ModuleDict({'linear1': nn.Linear(32, 64), 'act': nn.ReLU()})
net['linear2'] = nn.Linear(64, 128)
print(net)

5、nn.ModuleList 、 nn.ModuleDict 与 Python list、Dict 的区别

import torch.nn as nnnet = nn.ModuleList([nn.Linear(32, 64), nn.ReLU()])for name, param in net.named_parameters():print(name, param)print("-----------------------------")
for name, param in net.named_parameters():print(name, param.size())

显示结果如下:
在这里插入图片描述

import torch.nn as nnnet = nn.ModuleDict({'linear': nn.Linear(32, 64), 'act': nn.ReLU()})for name, param in net.named_parameters():print(name, param.size())
print("--------------------------")for name, param in net.named_parameters():print(name, param.size())

显示结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/152328.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

阿里云数据库MongoDB恢复到本地

共两种方式,建议使用第二种的逻辑恢复,比较方便快捷 一、下载物理备份文件 下载的格式是xb的,主要跟实例创建时间有关,2019年03月26日之前创建的实例,物理备份文件格式为tar,后面全部都是xb的格式了&#…

PTE阶段规划

目录 复习的各个阶段 线下应该如何 rs应对 从来都是流利度大于内容 推荐的练习网站 口语 DI 关键词是不能念错 口语 RL rl每日练习方法 ASQ 写作 swt 阅读 一半靠机经 听力 口语和听力 考模版来熟悉 熟悉模版 强调的是,整个的逻辑思维 字字和句句都…

【数据结构】排序

🐇 🔥博客主页: 云曦 📋系列专栏:数据结构 💨吾生也有涯,而知也无涯 💛 感谢大家👍点赞 😋关注📝评论 文章目录 前言一、排序的概念及运用二、常…

基于vue框架的uniapp小程序开发发现了新大陆

项目场景: 在基于vue框架的uniapp小程序开发中,在页面跳转时,当前页路径带参数,在跳转页中接受数据除了用官方推荐的保留当前页面,跳转到应用内的某个页面,使用onLoad(option)接受数据,但是我发…

TensorFlow入门(十四、数据读取机制(1))

TensorFlow的数据读取方式 TensorFlow的数据读取方式共有三种,分别是: ①预加载数据(Preloaded data) 预加载数据的方式,其实就是静态图(Graph)的模式。即将数据直接内嵌到Graph中,再把Graph传入Session中运行。 示例代码如下: import tensorflow.compat.v1 as tf tf.disabl…

CDN,DNS,ADN,SCDN,DCDN,ECDN,PCDN,融合CDN的介绍

一、CDN是什么? CDN的全称是Content Delivery Network,即内容分发网络。其基本思路是尽可能避开互联网上有可能影响数据传输速度和稳定性的瓶颈和环节,使内容传输得更快、更稳定。通过在网络各处放置节点服务器所构成的在现有的互联网基础之…

Windows系统搭建VisualSVN服务结合内网穿透实现公网访问

文章目录 前言1. VisualSVN安装与配置2. VisualSVN Server管理界面配置3. 安装cpolar内网穿透3.1 注册账号3.2 下载cpolar客户端3.3 登录cpolar web ui管理界面3.4 创建公网地址 4. 固定公网地址访问 前言 SVN 是 subversion 的缩写,是一个开放源代码的版本控制系统…

Ubuntu右上角不显示网络的图标解决办法

一.line5改为true sudo vim /etc/NetworkManager/NetworkManager.conf 二.重启网卡 sudo service network-manager stop sudo mv /var/lib/NetworkManager/NetworkManager.state /tmp sudo service network-manager start

超高频RFID模具精细化生产管理方案

近二十年来,我国的模具行业经历了快速发展的阶段,然而,模具行业作为一个传统、复杂且竞争激烈的行业,企业往往以订单为导向,每个订单都需要进行新产品的开发,从客户需求分析、结构确定、报价、设计、物料准…

大数据-玩转数据-Flink 海量数据实时去重

一、海量数据实时去重说明 借助redis的Set,需要频繁连接Redis,如果数据量过大, 对redis的内存也是一种压力;使用Flink的MapState,如果数据量过大, 状态后端最好选择 RocksDBStateBackend; 使用布隆过滤器,…

企业门户的必备选择,WorkPlus的定制化解决方案

在当今数字化时代,企业门户成为了企业内外沟通与协作的重要基础设施。WorkPlus作为领先的品牌,为企业提供了一站式的企业门户解决方案,旨在提升企业形象、改善内外部沟通与协作效率。本文将深入探讨WorkPlus如何通过定制化的设计,…

使用运放产生各种波形

目录复制 文章目录 RC正弦振荡电路文氏电桥振荡电路移项式正弦波振荡电路 集成函数发生器运算放大器驱动电容性负载峰值检波多通道运放未使用的运放接法 RC正弦振荡电路 文氏电桥振荡电路 这个振荡器起振条件RF > 2R1,起振后又希望RF 2R1产生矛盾怎么办? 将RF换…

Zama的fhEVM:基于全同态加密实现的隐私智能合约

1. 引言 Zama的fhEVM定位为: 基于全同态加密实现的隐私智能合约 解决方案 开源代码见: https://github.com/zama-ai/fhevm(TypeScript Solidity) Zama的fhEVM协议中主要包含: https://github.com/zama-ai/tfhe-…

东土科技与诺贝尔物理学奖2006年度得主斯穆特签约,加快布局工业AI

近日,诺贝尔物理学奖2006年度得主乔治.斯穆特教授与东土科技正式签约,成为东土科技工业人工智能顾问。 乔治斯穆特(George Fitzgerald Smoot)教授也曾获得爱因斯坦奖,在宇宙学、大数据、生物医学诊断仪器以及人工智能…

Leetcode hot 100之前缀和、差分数组、位运算

目录 差分数组-区间增减 和为K的子数组:前缀和 哈希表优化 除自身以外数组的乘积:前后缀区间 位运算 异或:同为0,不同为1 136. 只出现一次的数字:除了某个元素只出现一次以外,其余每个元素均出现2次…

40V汽车级P沟道MOSFET SQ4401EY-T1_GE3 工作原理、特性参数、封装形式—节省PCB空间,更可靠

AEC-Q101车规认证是一种基于失效机制的分立半导体应用测试认证规范。它是为了确保在汽车领域使用的分立半导体器件能够在严苛的环境条件下正常运行和长期可靠性而制定的。AEC-Q101认证包括一系列的失效机制和应力测试,以验证器件在高温、湿度、振动等恶劣条件下的可…

面试经典 150 题 4 —(数组 / 字符串)— 80. 删除有序数组中的重复项 II

80. 删除有序数组中的重复项 II 方法一 class Solution { public:int removeDuplicates(vector<int>& nums) {int len 0;for(auto num : nums)if(len < 2 || nums[len-2] ! num)nums[len] num;return len;} };方法二 class Solution { public:int removeDupli…

【多线程进阶】线程安全的集合类

文章目录 前言1. 多线程环境使用 ArrayList2. 多线程环境使用队列3. 多线程环境使用哈希表3.1 HashTable3.2 ConcurrentHashMap 总结 前言 本文主要讲解 Java 线程安全的集合类, 在之前学习过的集合类中, 只有 Vector, Stack, HashTable, 是线程安全的, 因为在他们的关键方法中…

使用DNS查询Web服务器IP地址

浏览器并不具备访问网络的功能&#xff0c;其最终是通过操作系统实现的&#xff0c;委托操作系统访问服务器时提供的并不是浏览器里面输入的域名而是ip地址&#xff0c;因此第一步需要将域名转换为对应的ip地址 域名&#xff1a;www.baidu.com ip地址是一串数字 tcp/ip的网络结…

百面机器学习书刊纠错

百面机器学习书刊纠错 P243 LSTM内部结构图 2023-10-7 输入门的输出 和 candidate的输出 进行按元素乘积之后 要和 遗忘门*上一层的cell state之积进行相加。