仅用61行代码,你也能从零训练大模型

本文并非基于微调训练模型,而是从头开始训练出一个全新的大语言模型的硬核教程。看完本篇,你将了解训练出一个大模型的环境准备、数据准备,生成分词,模型训练、测试模型等环节分别需要做什么。AI 小白友好~文中代码可以直接实操运行。

通过这篇文章,你可以预训练一个全新大语言模型。注意是全新的模型,不是微调。

全新训练的好处是训练的数据、训练的参数都是可修改的,通过调试运行我们可以更好的理解大模型训练过程。我们可以用特定类型数据的训练,来完成特定类型数据的输出。

技术交流

技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。

相关资料、数据、技术交流提升,均可加我们的交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、添加微信号:mlc2060,备注:来自CSDN + 技术交流
方式②、微信搜索公众号:机器学习社区,后台回复:加群

关于大模型已经有很多文章,微调模型的文章比较多,全新预训练全新模型的文章很少。个人觉得有的也讲的很复杂,代码也很难跑通。本文不会讲的很复杂,代码也很容易运行。仅用61行代码,就能训练出一个全新大语言模型。

图片

本文以代码为主,运行代码需要 Python 环境。

01 准备训练环境

我的训练环境基于腾讯云的 GPU 机器。

地址:https://cloud.tencent.com/product/gpu

  • GPU类型:GN7.2XLARGE32 T4 显卡:1颗 显存:16GB;
  • python 3.11;
  • requirements.txt:
tokenizers==0.13.3
torch==2.0.1
transformers==4.30.

02 准备训练数据

首先我们要为训练准备数据,比如我就想基于《三国演义》训练一个模型。三国演义下载地址:

https://raw.githubusercontent.com/xinzhanguo/hellollm/main/text/sanguoyanyi.txt

图片

03 训练分词器

分词(tokenization)是把输入文本切分成有意义的子单元(tokens)。通过以下代码,根据我们的数据生成一个新的分词器:

from tokenizers import Tokenizer
from tokenizers.models import BPE
from tokenizers.trainers import BpeTrainer
from tokenizers.normalizers import NFKC, Sequence
from tokenizers.pre_tokenizers import ByteLevel
from tokenizers.decoders import ByteLevel as ByteLevelDecoder
from transformers import GPT2TokenizerFast# 构建分词器 GPT2 基于 BPE 算法实现
tokenizer = Tokenizer(BPE(unk_token="<unk>"))
tokenizer.normalizer = Sequence([NFKC()])
tokenizer.pre_tokenizer = ByteLevel()
tokenizer.decoder = ByteLevelDecoder()special_tokens = ["<s>","<pad>","</s>","<unk>","<mask>"]
trainer = BpeTrainer(vocab_size=50000, show_progress=True, inital_alphabet=ByteLevel.alphabet(), special_tokens=special_tokens)
# 创建 text 文件夹,并把 sanguoyanyi.txt 下载,放到目录里
files = ["text/sanguoyanyi.txt"]
# 开始训练了
tokenizer.train(files, trainer)
# 把训练的分词通过GPT2保存起来,以方便后续使用
newtokenizer = GPT2TokenizerFast(tokenizer_object=tokenizer)
newtokenizer.save_pretrained("./sanguo")

运行时显示如下图:

图片

成功运行代码后,我们在 sanguo 目录生成如下文件:

merges.txt
special_tokens_map.json
tokenizer.json
tokenizer_config.json
vocab.json

现在我们已经成功训练了一个大语言模型的分词器。

04 训练模型

利用下面代码进行模型训练:

from transformers import GPT2Config, GPT2LMHeadModel, GPT2Tokenizer
# 加载分词器
tokenizer = GPT2Tokenizer.from_pretrained("./sanguo")
tokenizer.add_special_tokens({"eos_token": "</s>","bos_token": "<s>","unk_token": "<unk>","pad_token": "<pad>","mask_token": "<mask>"
})
# 配置GPT2模型参数
config = GPT2Config(vocab_size=tokenizer.vocab_size,bos_token_id=tokenizer.bos_token_id,eos_token_id=tokenizer.eos_token_id
)
# 创建模型
model = GPT2LMHeadModel(config)
# 训练数据我们用按行分割
from transformers import LineByLineTextDataset
dataset = LineByLineTextDataset(tokenizer=tokenizer,file_path="./text/sanguoyanyi.txt",block_size=32,# 如果训练时你的显存不够# 可以适当调小 block_size
)
from transformers import DataCollatorForLanguageModeling
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False, mlm_probability=0.15
)from transformers import Trainer, TrainingArguments
# 配置训练参数
training_args = TrainingArguments(output_dir="./output",overwrite_output_dir=True,num_train_epochs=20,per_gpu_train_batch_size=16,save_steps=2000,save_total_limit=2,
)
trainer = Trainer(model=model,args=training_args,data_collator=data_collator,train_dataset=dataset,
)
trainer.train()
# 保存模型
model.save_pretrained('./sanguo')

运行比较耗时,显示训练数据如下图:

图片

成功运行代码,我们发现 sanguo 目录下面多了三个文件:

config.json
generation_config.json
pytorch_model.bin

现在我们就成功生成训练出基于《三国演义》的一个大语言模型。

05 测试模型

我们用文本生成,对模型进行测试代码如下:

from transformers import pipeline, set_seed
generator = pipeline('text-generation', model='./sanguo')
set_seed(42)
txt = generator("吕布", max_length=10)
print(txt)

运行显示模型输出了三国相关的文本:“吕布十二回 张翼德 张翼德时曹操 武侯计计计”

图片

再测试一条:

txt = generator("接着奏乐", max_length=10)
print(txt)

“接着奏乐\u3000却说曹操引军因二人”

图片

这内容不忍直视,如果想优化,我们也可以基于全新的模型进行微调训练;我们也可以适当地调整下训练参数,以达到较好的效果。

06 完整代码

以下是完整代码,代码地址:

https://github.com/xinzhanguo/hellollm/blob/main/sanguo.py

linux 中运行方法:

# 创建环境
python3 -m venv ~/.env
# 加载环境
source ~/.env/bin/activate
# 下载代码
git clone git@github.com:xinzhanguo/hellollm.git
cd hellollm
# 安装依赖
pip install -r requirements.txt
# 运行代码
python sanguo.py

以上我们就完成一个全新的模型训练。代码去除注释空行总共61行。

本文代码模型是基于 GPT2 的,当然你也可以基于 LLama 或者 Bert 等模型去实现全新的大语言模型。

代码虽然不是很多,但是如果初次尝试运行的话你也许会遇到很多问题,比如环境搭建。为了避免其他烦恼,我建议用 docker 方式运行代码:

# 下载代码
git clone git@github.com:xinzhanguo/hellollm.git
cd hellollm
# 编译镜像
docker build -t hellollm:beta .
# 可以选择以GPU方式运行
# docker run -it --gpus all hellollm:beta sh
docker run -it hellollm:beta sh
python sanguo.py

更多代码可以参考:Hello LLM!

https://github.com/xinzhanguo/hellollm

以上就是本篇文章的全部内容,欢迎转发分享。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/152942.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

王道考研计算机组成原理——计算机硬件的基础知识

计算机组成原理的基本概念 计算机硬件的针脚都是用来传递信息&#xff0c;传递数据用的&#xff1a; 服务程序包含一些调试程序&#xff1a; 计算机硬件的基本组成 控制器通过电信号来协调其他部件的工作&#xff0c;同时负责解析存储器里存放的程序指令&#xff0c;然后指挥…

Reactor 模式网络服务器【I/O多路复用】(C++实现)

前导&#xff1a;本文是 I/O 多路复用的升级和实践&#xff0c;如果想实现一个类似的服务器的话&#xff0c;需要事先学习 epoll 服务器的编写。 友情链接&#xff1a; 高级 I/O【Linux】 I/O 多路复用【Linux/网络】&#xff08;C实现 epoll、select 和 epoll 服务器&#x…

vue启动项目,npm run dev出现error:0308010C:digital envelope routines::unsupported

运行vue项目&#xff0c;npm run dev的时候出现不支持错误error:0308010C:digital envelope routines::unsupported。 在网上找了很多&#xff0c;大部分都是因为版本问题&#xff0c;修改环境之类的&#xff0c;原因是对的但是大多还是没能解决。经过摸索终于解决了。 方法如…

【广州华锐互动】车辆零部件检修AR远程指导系统有效提高维修效率和准确性

在快速发展的科技时代&#xff0c;我们的生活和工作方式正在被重新定义。这种变化在许多领域都有所体现&#xff0c;尤其是在汽车维修行业。近年来&#xff0c;AR&#xff08;增强现实&#xff09;技术的进步为这个行业带来了前所未有的可能性。通过将AR技术与远程协助系统相结…

Mac 文件设置默认展示和排列方式

点击 现在默认展示方式是分栏方式&#xff0c;因我我勾选了 点击这里就可以修改 始终以xx打开&#xff0c;这里我选择了图标视图。 有快捷键 commandJ 修改默认配置。

Qt/C++原创推流工具/支持多种流媒体服务/ZLMediaKit/srs/mediamtx等

一、前言 1.1 功能特点 支持各种本地视频文件和网络视频文件。支持各种网络视频流&#xff0c;网络摄像头&#xff0c;协议包括rtsp、rtmp、http。支持将本地摄像头设备推流&#xff0c;可指定分辨率和帧率等。支持将本地桌面推流&#xff0c;可指定屏幕区域和帧率等。自动启…

Spring中的设计模式

目录 工厂模式 组合模式 适配器模式 代理模式 单例模式 观察者模式 模板方法模式 责任链模式 Spring有着非常优雅的设计&#xff0c;很多地方都遵循SOLID原则&#xff0c;里面的设计模式更是数不胜数大概有以下几种&#xff1a; 工厂模式 所谓的工厂模式&#xff0c;核…

十三、Django之添加用户(原始方法实现)

修改urls.py path("user/add/", views.user_add),添加user_add.html {% extends layout.html %} {% block content %}<div class"container"><div class"panel panel-default"><div class"panel-heading"><h3 c…

解决ASP.NET Core的中间件无法读取Response.Body的问题

概要 本文主要介绍如何在ASP.NET Core的中间件中&#xff0c;读取Response.Body的方法&#xff0c;以便于我们实现更多的定制化开发。本文介绍的方法适用于.Net 3.1 和 .Net 6。 代码和实现 现象解释 首先我们尝试在自定义中间件中直接读取Response.Body&#xff0c;代码如…

【计算机网络黑皮书】传输层

【事先声明】 这是对于中科大的计算机网络的网课的学习笔记&#xff0c;感谢郑烇老师的无偿分享 书籍是《计算机网络&#xff08;自顶向下方法 第6版&#xff09;》 需要的可以私信我&#xff0c;无偿分享&#xff0c;课程简介下也有 课程链接 目录 传输服务与协议网络层与传输…

redis,mongoDB,mysql,Elasticsearch区别

Redis&#xff1a; Redis是一种高性能键值存储数据库&#xff0c;基于内存操作&#xff0c;支持数据持久化&#xff0c;支持数据类型丰富灵活&#xff0c;如字符串、哈希、列表、集合、有序集合等。Redis还提供了订阅/发布、事务、Lua脚本、主从同步等功能&#xff0c;适用于访…

数学分析:含参变量的积分

同样很多收敛性的证明不是重点&#xff0c;但里面的知识还是需要适当掌握&#xff0c;知道中间的大致思考和解决路径即可。 本质还是极限的可交换性&#xff0c;求导可以换到积分里面去操作。 这里要注意变量的区别&#xff0c;首先积分的被积变量是x&#xff0c;但是函数的变量…

对于L1正则化和L2正则化的理解

在DL中&#xff0c;L1和L2正则化经常被使用到&#xff0c;因为大于1L的正则化都是凸优化的问题&#xff0c;是个简单问题&#xff0c;可以被解决。 首先说正则的意义&#xff1a; 一切可以缓解过拟合的方法&#xff0c;都可以被叫做正则化 我最开始理解正则化的时候就是看lh…

基于共生生物优化的BP神经网络(分类应用) - 附代码

基于共生生物优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码 文章目录 基于共生生物优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码1.鸢尾花iris数据介绍2.数据集整理3.共生生物优化BP神经网络3.1 BP神经网络参数设置3.2 共生生物算法应用 4.测试结果…

一个好用的k8s代理工具——KtConnect

介绍 KtConnect实现了开发者本地运行的服务与Kubernetes集群中的服务之间的双向互通。 核心功能 本地直接访问Kubernetes集群内网 通过KtConnect可以直接连接Kubernetes集群内部网络&#xff0c;在不修改代码的情况下完成本地联调测试 本地解析Kubernetes服务内网域名 直…

SpringCloud学习笔记-注册微服务到Eureka注册中心

目录 1.在该Module的pom文件中引入eureka依赖2.在该module的src/main/resources/application.yml配置文件3.启动对应的微服务4.查看微服务是否启动成功 假如我有一个微服务名字叫user-service,我需要把它注册到Eureka注册中心,则具体步骤如下: 1.在该Module的pom文件中引入eure…

Bootstrap中固定某一个元素不随滚动条滚动

可以利用类sticky-top实现固定某个元素在顶部的效果&#xff0c;示例代码如下&#xff1a; <!DOCTYPE html> <html> <head><meta charset"UTF-8"><title>固定某一个元素不随滚动条滚动</title><meta name"viewport&quo…

子组件跳转父组件

描述&#xff1a;父组件Form.vue 点击关联&#xff0c;弹出子组件importForm.vue 选中一条数据之后&#xff0c;点击确定按钮&#xff0c;关闭子组件importForm.vue&#xff0c;将子组件的内容显示在父组件Form.vue中 选中第一条数据&#xff0c;点击确定 父组件对应的工作内容…

【新书推荐】当 Python 遇到 ChatGPT —— 自动化办公落地

文章目录 当 Python 遇到 ChatGPT&#xff1a;一种强大的组合1. 文本生成2. 自动翻译3. 对话生成4. 情感分析 新书推荐《Python自动化办公应用大全&#xff08;ChatGPT版&#xff09;&#xff1a;从零开始教编程小白一键搞定烦琐工作&#xff08;上下册&#xff09;》前言内容简…

pillow篇---pillow连续打开同一张图片会导致打开失败问题

如果你需要在多次操作同一张图像时避免出现缓存问题&#xff0c;你可以使用 Image.open() 方法的 seek() 方法将文件指针移动到图像数据的开头&#xff0c;以便重新读取图像数据。示例如下&#xff1a; from PIL import Image# 打开图像文件 image Image.open(example.jpg)# …