实验1机器学习之线性回归实验

一、实验目的:

(1)理解一元线性回归和多元线性回归的数学原理,能够利用sklearn中相关库解决现实世界中的各类回归问题;

(2)掌握利用matplotlib对一元线性回归模型进行可视化的方法,并分析模型的优劣;

(3)掌握利用statsmodels进行线性回归并进行模型评价的方法;

(4)掌握利用回归模型对现实问题进行分析和解释的能力。

二、实验仪器及实验环境

(1)硬件:PC机;

(2)软件:Anaconda Jupyter Notebook,Spyder,Pandas

、实验内容:

(一)基于伊春市木材剩余物数据利用回归模型预测木材剩余物

伊春林区位于黑龙江省东北部。全区有森林面积218.9732万公顷,木材蓄积量为2.324602亿m3。森林覆盖率为62.5%,是我国主要的木材工业基地之一。1999年伊春林区木材采伐量为532万m3。按此速度44年之后,1999年的蓄积量将被采伐一空。所以目前亟待调整木材采伐规划与方式,保护森林生态环境。为缓解森林资源危机,并解决部分职工就业问题,除了做好木材的深加工外,还要充分利用木材剩余物生产林业产品,如纸浆、纸袋、纸板等。因此预测林区的年木材剩余物是安排木材剩余物加工生产的一个关键环节。下面,利用一元线性回归模型预测林区每年的木材剩余物。显然引起木材剩余物变化的关键因素是年木材采伐量。

给出伊春林区16个林业局1999年木材剩余物和年木材采伐量数据见“木材剩余物.csv”。

1.读取伊春市木材剩余物数据集,并显示输入

OSError: Initializing from file failed

解决方法:http://t.csdnimg.cn/afyEh

import numpy as np
import pandas as pd
filepath=r"D:\木材剩余物.csv"
df=pd.read_csv(filepath,sep=",",index_col=0,engine='python')#engine='python'
columns=["剩余物","采伐量"]
df.columns=columns
df.head()

#因为\在python中时转义的意思,这里所表示的路径在编码时无法被正确识别,加上r可强制不转义。

#因为\在python中时转义的意思,这里所表示的路径在编码时无法被正确识别,加上r可强制不转义。

index_col=0告诉Pandas使用第一列作为索引。

2、利用分割X和Y数据集。

X=df[["采伐量"]]#这里如果不加两层中括号没有表格
Y=df["剩余物"]
X.head()

3、对数据进行可视化显示。

X=df[["采伐量"]]#这里如果不加两层中括号没有表格
Y=df["剩余物"]
X.head()

4、利用sklearn中的线性回归模型建立回归模型,对模型进行训练,输出模型参数。

from sklearn.linear_model import LinearRegression
regr=LinearRegression()
regr.fit(X,Y)
regr.coef_,regr.intercept_#regr.coef代表y=ax+b中的a,权值,而regr.intercept代表截距,就是b

5、假设乌伊岭林业局2000年计划采伐木材20万m3,求木材剩余物的点预测值。

通过计算,置信度为0.95的2000年平均木材剩余物E(y2000)的置信区间是

从而得出预测结果,2000年若采伐木材20万m3,产生木材剩余物的点估计值是7.3231万m3。平均木材剩余物产出量的置信区间估计是在 [5.8736, 8.7726] 万m3之间。从而为恰当安排2000年木材剩余物的加工生产提供依据。

6、利用statsmodels实现线性回归并对模型进行评估。

import statsmodels.api as sm
X2=sm.add_constant(X)
est=sm.OLS(Y,X2).fit()
print(est.summary())

代码解读:

sm.add_constant()函数用于增加截距项,也就是增加一个常数项。

sm.OLS()函数使用OLS(普通最小二乘法)建立线性回归模型est。

est.summary()用于输出模型评估结果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/153229.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构初阶】七、非线性表里的二叉树(堆的实现 -- C语言顺序结构)

相关代码gitee自取: C语言学习日记: 加油努力 (gitee.com) 接上期: 【数据结构初阶】六、线性表中的队列(链式结构实现队列)-CSDN博客 1 . 非线性表里的 树(Tree) 树的概念及结构: 树的概念 树是一种非线性的数据…

【计算机网络】高级IO初步理解

文章目录 1. 什么是IO?什么是高效 IO? 2. IO的五种模型五种IO模型的概念理解同步IO与异步IO整体理解 3. 阻塞IO4. 非阻塞IOsetnonblock函数为什么非阻塞IO会读取错误?对错误码的进一步判断检测数据没有就绪时,返回做一些其他事情完整代码myt…

黑马JVM总结(二十九)

(1)语法糖-重写桥接 (2)语法糖-匿名内部类 (3)类加载-加载 类加载可以分为3个阶段,加载、连接、初始化 我们知道java类编译成字节码以后,运行呢需要类加载器把类的字节码加载到方法…

git的基本使用

git地址 https://git-scm.com/ git首次安装必须设置签名代码,否则无法提交代码 git init git status 14 idea中连接gitee file-setting中安装gitee插件,安装gitee插件后可以在version control中看到gitee,点击 添加gitee账号&#xff…

Kafka和RabbitMQ的对比

Rabbitmq比kafka可靠,kafka更适合IO高吞吐的处理,比如ELK日志收集 Kafka和RabbitMq一样是通用意图消息代理,他们都是以分布式部署为目的。但是他们对消息语义模型的定义的假设是非常不同的。 a) 以下场景比较适合使用Kafka。如果有大量的事…

聊聊MySQL的聚簇索引和非聚簇索引

文章目录 1. 索引的分类1. 存储结构维度2. 功能维度3. 列数维度4. 存储方式维度5. 更新方式维度 2. 聚簇索引2.1 什么是聚簇索引2.2 聚簇索引的工作原理 3. 非聚簇索引(MySQL官方文档称为Secondary Indexes)3.1 什么是非聚簇索引3.2 非聚簇索引的工作原理…

Win10系统打开组策略编辑器的两种方法

组策略编辑器是Win10电脑中很实用的工具,它可以帮助用户管理和设置计算机的安全性、网络连接、软件安装等各种策略。但是,很多新手用户不知道打开Win10电脑中组策略编辑器的方法步骤,下面小编给大家介绍两种简单的方法,帮助打开快…

Gitlab+Jenkins自动化部署,解放双手

项目打包 ​ 在部署项目前需要对源码进行打包&#xff0c;一个简单的SpringBoot项目默认是打包为jar包&#xff0c;也就是在pom.xml中的<packaging>jar</packaging>方式&#xff0c;当然也会有一些打包成war包方式&#xff0c;使用外置的Tomcat应用服务器部署war包…

Python装饰器(一次搞清楚)

最重要的情绪管理是要明白&#xff0c;没有一种情绪是不应该的 一、简单装饰器 Python装饰器是一种语法糖&#xff0c;用于在不改变原有函数代码的情况下&#xff0c;为函数添加额外的功能。装饰器本质上是一个函数&#xff0c;它接收一个函数作为参数&#xff0c;并返回一个新…

【python】exec()内置函数释义

【python】exec内置函数释义 官方释义样例注意事项拓展感谢及参考博文 官方释义 官方Python API文档镇楼 exec(object, globalsNone, localsNone, /, *, closureNone) 支持动态执行 Python 代码&#xff0c; object 必须是字符串或者代码对象。 需要特别注意以下两点&#xff…

css自学框架之面板

面板是我们开发中经常用到&#xff0c;也就是页面版面中一块一块的板块&#xff0c;效果如下图&#xff1a; 一、css代码 .myth-panel {background-color: var(--white);border: solid 1px transparent;}.myth-panel .myth-panel-header {border-bottom: solid 1px transpar…

Play Beyond:Sui让优秀的游戏变得更好

自问世以来&#xff0c;视频游戏就紧随着文化产业发展。从Pong和Space Invaders的时代到Animal Crossing和Among Us&#xff0c;伟大的游戏总有能力吸引玩家&#xff0c;并推动娱乐产业发展。根据Grand View Research的数据&#xff0c;全球视频游戏市场在2022年估计为2170.6亿…

JavaScript进阶 第一天笔记

JavaScript 进阶 - 第1天 学习作用域、变量提升、闭包等语言特征&#xff0c;加深对 JavaScript 的理解&#xff0c;掌握变量赋值、函数声明的简洁语法&#xff0c;降低代码的冗余度。 理解作用域对程序执行的影响能够分析程序执行的作用域范围理解闭包本质&#xff0c;利用闭包…

核货宝:服装店收银系统如何选择?收银系统选购指南!

对于各行各业而言&#xff0c;收银系统都是必备的工具。特别是对于像服装店这样的零售门店来说&#xff0c;选择一套适合的收银系统尤为重要。在选择收银系统时&#xff0c;有一些关键的技巧需要注意&#xff0c;以达到软硬件合理搭配、节省开支的目的。下面将分享四个选购服装…

《视觉 SLAM 十四讲》第 7 讲 视觉里程计1 【如何根据图像 估计 相机运动】【特征点法】

github源码链接V2 文章目录 第 7 讲 视觉里程计17.1 特征点法7.1.1 特征点7.1.2 ORB 特征FAST 关键点 ⟹ \Longrightarrow ⟹ Oriented FASTBRIEF 描述子 7.1.3 特征匹配 7.2 实践 【Code】本讲 CMakeLists.txt 7.2.1 使用 OpenCV 进行 ORB 的特征匹配 【Code】7.2.2 手写 O…

智慧茶园:茶厂茶园监管可视化视频管理系统解决方案

一、方案背景 我国是茶叶生产大国&#xff0c;茶叶销量全世界第一。随着经济社会的发展和人民生活水平的提高&#xff0c;对健康、天然的茶叶产品的消费需求量也在逐步提高。茶叶的种植、生产和制作过程工序复杂&#xff0c;伴随着人力成本的上升&#xff0c;传统茶厂的运营及…

怒刷LeetCode的第25天(Java版)

目录 第一题 题目来源 题目内容 解决方法 方法一&#xff1a;闭合为环 第二题 题目来源 题目内容 解决方法 方法一&#xff1a;动态规划 方法二&#xff1a;组合数学 方法三&#xff1a;递归 方法四&#xff1a;数学公式 第三题 题目来源 题目内容 解决方法 …

TCP原理特性详解

文章目录 可靠传输机制1.确认应答2.超时重传2.连接管理1.三次握手2.四次挥手 传输效率1.滑动窗口2.流量控制3.拥塞控制4.延时应答5.捎带应答 面向字节流粘包问题 TCP异常情况 可靠传输机制 可靠性&#xff1a;即发送方知道数据是发送成功了&#xff0c;还是失败了。 1.确认应答…

如何精细化管理嵌入式软件项目?ACT汽车电子与软件技术周演讲回顾

2023 ACT汽车电子与软件技术周已于8月18日在中国上海落下帷幕。展会现场&#xff0c;龙智技术支持部负责人、Atlassian认证专家叶燕秀与龙智技术工程师邱洁玉共同为观众带来了主题为“更好、更快、更安全&#xff1a;嵌入式开发中的最佳实践与工具链构建”的演讲&#xff0c;分…

elasticsearch内存占用详细分析

内存占用 ES的JVM heap按使用场景分为可GC部分和常驻部分。 可GC部分内存会随着GC操作而被回收&#xff1b; 常驻部分不会被GC&#xff0c;通常使用LRU策略来进行淘汰&#xff1b; 内存占用情况如下图&#xff1a; common space 包括了indexing buffer和其他ES运行需要的clas…