如何正确方便的理解双指针?力扣102 (二叉树的层序遍历)

双指针,顾名思义就是指针的指针。
在此之前我们需要先理解单指针 (简称为指针)。指针很简单,直接上例子:例:现有两个变量,a=10,b=20.
要求:交换他们的值,输出的结果应为a=20,b=10。

#include <bits/stdc++.h>
using namespace std;void swap(int a, int b) {int temp = a;a = b;b = temp;
}int main() {int a = 10, b = 20;swap(a, b);cout << a << " " << b << endl;return 0;
}

乍一看没问题,结果:在这里插入图片描述
交换失败。失败的原因是在函数swap(int a,int b)中,接收的a和b是两个整型的值而不是指针(换句话说,这里交换的是形式参数而非实际参数)。int a=10;int b=10;定义的是两个实际参数,swap(int a,int b)中的a和b是形式参数,形参的交换对实参的交换是没有影响的。因此要将void swap(int a, int b)修改为void swap(int &a, int &b)

#include <bits/stdc++.h>
using namespace std;
void swap(int &a, int &b) {int temp = a;a = b;b = temp;
}
int main() {int a = 10;int b = 20;swap(a, b);cout << a << " " << b << endl;return 0;
}

在这里插入图片描述
成功。这里的void swap(int &a, int &b)是引用传递,当你调用这个函数时交换操作会直接修改变量a和b的值。这意味着函数外部的变量a和b的值也会发生交换。
当你使用swap(int *a, int *b)函数时得出的结果和上述的引用传参是一样的,但是原理不同:此时参数a和b是指向整型的指针,函数内部通过指针操作来交换变量的值。

void swap(int *a, int *b) {int temp = *a;*a = *b;*b = temp;
}它们的运行结果相同。总结:**引用方式和指针方式**的交换两个变量的值的区别:
1、语法:
引用方式:使用引用作为形式参数,在函数内部直接操作引用所绑定的变量。
指针方式:使用指针作为形式参数,在函数内部通过引用指针所指向的地址来修改变量的值。因此引用方式的执行效率更高。
2、调用方式:
**引用方式直接将变量作为实际参数传递给函数**,无需取地址操作。
**指针方式:将变量的地址作为实际参数传递给函数**,在调用时取地址操作符&。
3、影响范围:
引用方式通过**引用传递,函数内部的修改会直接影响到函数外部的变量**。
指针方式:通过**指针传递,函数内部的修改只影响指针所指向的内存地址**,不会修改指针外部的变量。*注意:在函数内部修改指针指向的值,则会影响函数外部的变量。*
4、错误处理:
**引用方式的引用必须绑定到一个已存在的对象,**所以在使用引用方式交换值时不需要考虑空指针或者野指针的可能性。
**指针方式:指针可以为NULL或者指向未知的内存地址**,所以在使用指针交换值时需要注意指针的有效性,避免空指针或者野指针的访问。# 因此:我们明白了:引用方式更为简洁和安全;指针方式更加灵活,可以处理更多的特殊情况,但是相对复杂。接下来就可以开始介绍:**双指针**```cpp
#include <bits/stdc++.h>
using namespace std;void swap(int **a, int **b) {int *temp = *a;*a = *b;*b = temp;
}int main() {int a = 10;int b = 20;int *str1 = &a;int *str2 = &b;swap(&str1, &str2);cout << *str1 << " " << *str2 << endl;return 0;
}

在这里插入图片描述
和单指针对比着看就很直观了!swap的形式参数的a和b各多了一颗“*”,整型变量temp多了一颗*。其余的没有变化。因此双指针就是给指针又套上了一个指针,并没有很复杂。学完了双指针,我们来做一题对应的习题:LeetCode102 二叉树的层次遍历
在这里插入图片描述
核心代码:

int **levealOrder(struct TreeNode *root, int *returnSize, int **returnColumnSizes) { //层序遍历函数int **ans = (int **)malloc(sizeof(int *) * 2000); //动态创建一个二维数组ans用于存储层序遍历的结果*returnSize = 0; //所在层数if (!root)return NULL;int columnSizes[2000];//存所在层的结点struct TreeNode *queue[2000];//用于存储结点的队列int rear = 0, head = 0; //表示队头和队尾的索引queue[rear++] = root; //将结点进入队列while (rear != head) {ans[(*returnSize)] = (int *)malloc(sizeof(int) * (rear - head)); //存储当前结点columnSizes[(*returnSize)] = rear - head; //存储当前层的结点数量int start = head; //当前层在队列中的起始位置head = rear; //头部索引变为尾部索引,表示将要开始遍历下一层for (int i = start; i < head; i++) { //遍历当前层的所有结点ans[(*returnSize)][i - start] = queue[i]->val;if (queue[i]->left)queue[rear++] = queue[i]->left;if (queue[i]->right)queue[rear++] = queue[i]->right;}(*returnSize)++;}*returnColumnSizes = (int *)malloc(sizeof(int) * (*returnSize));for (int i = 0; i < *returnSize; i++)(*returnColumnSizes)[i] = columnSizes[i];return ans;
}

该算法是一个层序遍历算法.层序遍历的过程用大白话描述就是:
if 无根结点,结束
else 有根结点
(1)先遍历根结点;
(2)若有左孩子,将左结点放入队列数组中;
(3)若有右孩子,将右结点放入队列数组中;
重复上述过程直到结点为NULL。

关于这个算法核心部分的解释:首先levealOrder函数的形式参数有3个,第一个是单指针指向(或者说引用)根结点root,
第二个是单指针指向层序遍历的初始层数,
第三个是双指针指向每层结点数量的数组。
该函数最终要返回一个存储层序遍历结果的二维数组ans[][].

int **ans指向一个动态创建的二维数组,用于存储层序遍历的结果:
行代表所在层,列代表所在层的结点位置。即ans[returnSize][rear-head].
(rear-head)是当前层的结点的位置。head和rear分别是队头和队尾的索引。
queue[]用于存储结点以方便遍历。
columnSize用于存储每层结点的数量;

完整代码:

#include <bits/stdc++.h>
using namespace std;typedef struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;
} TreeNode;TreeNode *createNode(int val) {TreeNode *newNode = (TreeNode *)malloc(sizeof(TreeNode));newNode ->val = val;newNode ->left = NULL;newNode ->right = NULL;return newNode;
}int **levealOrder(struct TreeNode *root, int *returnSize, int **returnColumnSizes) { //层序遍历函数int **ans = (int **)malloc(sizeof(int *) * 2000); //动态创建一个二维数组ans用于存储层序遍历的结果*returnSize = 0; //所在层数if (!root)return NULL;int columnSizes[2000];//存所在层的结点struct TreeNode *queue[2000];//用于存储结点的队列int rear = 0, head = 0; //表示队头和队尾的索引queue[rear++] = root; //将结点进入队列while (rear != head) {ans[(*returnSize)] = (int *)malloc(sizeof(int) * (rear - head)); //存储当前结点columnSizes[(*returnSize)] = rear - head; //存储当前层的结点数量int start = head; //当前层在队列中的起始位置head = rear; //头部索引变为尾部索引,表示将要开始遍历下一层for (int i = start; i < head; i++) { //遍历当前层的所有结点ans[(*returnSize)][i - start] = queue[i]->val;if (queue[i]->left)queue[rear++] = queue[i]->left;if (queue[i]->right)queue[rear++] = queue[i]->right;}(*returnSize)++;}*returnColumnSizes = (int *)malloc(sizeof(int) * (*returnSize));for (int i = 0; i < *returnSize; i++)(*returnColumnSizes)[i] = columnSizes[i];return ans;
}int main() {TreeNode *root = createNode(3);root->left = createNode(9);root->right = createNode(20);root->right->left = createNode(15);root->right->right = createNode(20);int returnSize;//记录当前层数int *returnColumnSizes;//存放当前层结点的数组int **result = levealOrder(root, &returnSize, &returnColumnSizes);for (int i = 0; i < returnSize; i++) {cout << "第" << (i + 1) << "层:";for (int j = 0; j < returnColumnSizes[i]; j++)cout << result[i][j] << " " ;cout << endl;}for (int i = 0; i < returnSize; i++)free(result[i]);//动态创建的空间用完之后要释放掉,避免内存泄漏的风险。free(result);free(returnColumnSizes);return 0;
}

结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/153767.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Flink之Watermark源码解析

1. WaterMark源码分析 在Flink官网中介绍watermark和数据是异步处理的,通过分析源码得知这个说法不够准确或者说不够详细,这个异步处理要分为两种情况: watermark源头watermark下游 这两种情况的处理方式并不相同,在watermark的源头确实是异步处理的,但是在下游只是做的判断,这…

LLaVa大模型关键技术及在线演示

LLaVA&#xff0c;一种新的大型多模态模型&#xff0c;称为“大型语言和视觉助手”&#xff0c;旨在开发一种通用视觉助手&#xff0c;可以遵循语言和图像指令来完成各种现实世界的任务。 这个想法是将 GPT-4 等大型语言模型 (LLM) 的强大功能与 CLIP 等视觉编码器相结合&#…

【MATLAB源码-第45期】基于matlab的16APSK调制解调仿真,使用卷积编码软判决。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 1. 16APSK调制解调 16APSK (16-ary Amplitude Phase Shift Keying) 是一种相位调制技术&#xff0c;其基本思想是在恒定幅度的条件下&#xff0c;改变信号的相位&#xff0c;从而传送信息。 - 调制&#xff1a;在16APSK中&am…

Transformer预测 | Pytorch实现基于Transformer的锂电池寿命预测(NASA数据集)

文章目录 效果一览文章概述模型描述程序设计参考资料效果一览 文章概述 Pytorch实现基于Transformer 的锂电池寿命预测,环境为pytorch 1.8.0,pandas 0.24.2 随着充放电次数的增加,锂电池的性能逐渐下降。电池的性能可以用容量来表示,故寿命预测 (RUL) 可以定义如下: SOH(t…

golang gin——controller 模型绑定与参数校验

controller 模型绑定与参数校验 gin框架提供了多种方法可以将请求体的内容绑定到对应struct上&#xff0c;并且提供了一些预置的参数校验 绑定方法 根据数据源和类型的不同&#xff0c;gin提供了不同的绑定方法 Bind, shouldBind: 从form表单中去绑定对象BindJSON, shouldB…

CTR特征建模:ContextNet MaskNet(Twitter在用的排序模型)

在之前的文章中 FiBiNet&FiBiNet模型&#xff0c;阐述了微博在CTR特征(Embedding)重要性建模方面的一些实践方向&#xff0c;今天再来学习下这个方面的两个相关研究&#xff1a;致力于特征和特征交互精炼(refine)的ContextNet和MaskNet&#xff0c;其中MaskNet也是Twitter(…

Unity 捕鱼游戏开发教程与源码

效果图展示 项目分析 主要功能点&#xff1a; 鱼的移动路线 这里使用简单移动的方式&#xff1a;随机位置然后随机鱼直线或者每帧更新鱼的角度实现走圆形。枪随着鼠标或点击位置移动 这个用坐标转换参考代码 private void Update(){Vector3 mousePos; // 鼠标位置// RectTra…

代码随想录Day15 二叉树 LeetCodeT513 找树左下角的值 T112路径总和 T106 从中序和后序遍历构造二叉树

以上思路来自于:代码随想录 (programmercarl.com) LeetCode T513 找树左下角的值 题目思路: 本题思路:这题我们使用递归法和迭代法解决问题 注意:左下角的值不一定就是一直向左遍历的叶子结点的值,首先可以确定是最后一行的第一个叶子结点的值,也就是最大深度的叶子结点的值 定…

【JavaEE】多线程(五)- 基础知识完结篇

多线程&#xff08;五&#xff09; 文章目录 多线程&#xff08;五&#xff09;volatile关键字保证内存可见性JMM&#xff08;Java Memory Model&#xff09; 不保证原子性 wait 和 notifywait()notify()线程饿死 上文我们主要讲了 synchronized以及线程安全的一些话题 可重入…

Unity设计模式——装饰模式

装饰模式&#xff08;Decorator&#xff09;&#xff0c;动态地给一个对象添加一些额外的职责&#xff0c;就增加功能来说&#xff0c;装饰模式比生成子类更为灵活。 Component类&#xff1a; abstract class Component : MonoBehaviour {public abstract void Operation(); …

网络层协议—IP协议

网络层协议—IP协议 文章目录 网络层协议—IP协议网络层简介IP协议简介IP协议文格式IP协议报头实现网络互联的使用设备 网段划分IP地址划分子网掩码IP地址的特点特殊的IP地址IP地址的数量限制私有IP地址和公网IP地址NAT技术 路由报文的分片与组装IP地址和硬件地址 网络层简介 …

Spring 统一处理(JavaEE进阶系列6)

目录 前言&#xff1a; 1.用户登录权限的校验 2.Spring拦截器 2.1自定义拦截器 2.2将自定义拦截器加入到系统配置 2.3拦截器练习 2.4拦截器的实现原理 3.统一异常处理 4.统一数据的返回格式 结束语&#xff1a; 前言&#xff1a; 接下来就是Spring Boot中的统一功能…

对于使用win32 API获取性能计数器的理解

微软提供了获取性能计数器的接口&#xff0c;如下 LSTATUS RegQueryValueExA([in] HKEY hKey,[in, optional] LPCSTR lpValueName,LPDWORD lpReserved,[out, optional] LPDWORD lpType,[out, optional] LPBYTE lpData,[in, out, optional] L…

mysql面试题30:什么是数据库连接池、应用程序和数据库建立连接的过程、为什么需要数据库连接池、你知道哪些数据库连接池

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:什么是数据库连接池? 数据库连接池是一种用于管理和复用数据库连接的技术。它是在应用程序和数据库之间建立一组数据库连接,并以池的形式存储起…

Kubernetes革命:云原生时代的应用编排和自动化

文章目录 什么是Kubernetes以及为何它备受欢迎&#xff1f;云原生应用和K8s的关系Kubernetes的核心概念&#xff1a;Pods、Services、ReplicaSets等部署、扩展和管理应用程序的自动化容器编排的演进&#xff1a;Docker到Kubernetes实际用例&#xff1a;企业如何受益于K8s的应用…

winform窗体控件太多显示不过来,怎么实现滚动条

winform窗体控件太多显示不过来&#xff0c;怎么实现滚动条 Winform Panel实现滚动条 一、创建panel 在界面上拖拽一个父级Panel1&#xff0c;然后在Panel1里面拖拽一个子级Panel2 设置父级Panel1的AutoScroll属性为True 属性设置好后&#xff0c;当子级高度或者宽度大于父…

LED灯实验--汇编

asm-led.S .text .global _start _start: /* 1. led灯的初始化 *//* 1.1 使能GPIOE、DPIOF外设控制器的时钟 */ldr r0, 0x50000A28ldr r1, [r0]orr r1, r1, #(0x3 << 4)str r1, [r0]/* 1.2 设置PE10、PE8、PF10引脚为输出模式 */ldr r0, 0x50006000ldr r1, [r0]bic r1,…

jenkins工具系列 —— 插件 使用Changelog获取commit记录

文章目录 安装changelog插件重启jenkins配置 ChangelogExecute shell 使用 changelog邮件中html格式也可以使用构建测试&#xff08;查看构建项 -> 控制台输出&#xff09; 安装changelog插件 插件文件可通过 V 获取 点击 左侧的 Manage Jenkins —> Plugins ——> …

虹科方案 | 汽车CAN/LIN总线数据采集解决方案

全文导读&#xff1a;现代汽车配备了复杂的电子系统&#xff0c;CAN和LIN总线已成为这些系统之间实现通信的标准协议&#xff0c;为了开发和优化汽车的电子功能&#xff0c;汽车制造商和工程师需要可靠的数据采集解决方案。基于PCAN和PLIN设备&#xff0c;虹科提供了一种高效、…