计算机视觉--距离变换算法

计算机视觉


文章目录

  • 计算机视觉
  • 前言
    • 距离变换
  • 总结


前言

计算机视觉CV是人工智能一个非常重要的领域。 在本次的距离变换任务中,我们将使用D4距离度量方法来对图像进行处理。通过这次实验,我们可以更好地理解距离度量在计算机视觉中的应用。希望大家对计算机视觉和图像处理有了更深入的了解。让我们一起来看看实际的计算结果和可视化效果吧!

距离变换是一种常用的方法,它可以帮助我们计算出每个像素点与最近的前景像素点之间的距离。这对于图像分析、目标检测和图像配准等任务至关重要。D4距离定义为两个像素点之间在水平和垂直方向上的绝对距离之和。通过这种度量方式,我们可以获得每个像素点到最近的前景像素点的距离。为了测试距离变换的效果,我们首先随机生成了一张8*8大小的图像,并随机选取了其中的10个像素点作为前景像素。前景像素用1表示,背景像素用0表示。接下来,我们实现了一个距离函数,用于计算两个像素点之间的D4距离。然后,我们通过遍历图像中的每个像素点,计算其与与其最近的前景像素点的距离,并将结果保存到一个距离矩阵中。最后,我们将原始图像和距离变换后的结果进行可视化展示。使用灰度图像表示原始图像,黑色像素点表示随机生成的前景像素点。而距离变换结果则使用“cool”颜色映射进行显示,较远的像素点呈现较浅的颜色,较近的像素点呈现较深的颜色。

距离变换

D4距离介绍: 像素p(x,y)和q(s,t)之间的D4距离定义为: = |x – s| + |y – t|
D4距离变换算法是一种常用的图像处理算法,用于计算图像中像素点与最近的前景像素点之间的距离。
在D4距离变换算法中,D4代表了四邻域距离度量。它仅考虑像素点之间在水平和垂直方向上的差异,而忽略了对角线方向上的差异。

算法步骤如下:

  1. 初始化一个与原始图像大小相同的距离矩阵,其中所有背景像素点的距离值为0。
  2. 从图像中选择一个前景像素点作为起点。
  3. 遍历图像中的每个背景像素点,并计算其到起点像素点的D4距离。
  4. 比较当前像素点与起点之间的距离与之前计算得到的最小距离,如果当前距离更小,则更新该像素点的距离值为当前距离。
  5. 重复第3步和第4步,直到遍历完所有的背景像素点。
  6. 选择下一个前景像素点作为起点,重复以上步骤,直到遍历完所有的前景像素点。
  7. 最终得到的距离矩阵即为距离变换后的结果,其中每个像素点的距离值表示该像素点到离它最近的前景像素点的距离。
import numpy as np
import matplotlib.pyplot as pltimage = np.random.randint(2, size=(8, 8))
print('原始图片:\n', image)for i in range(10):x, y = np.random.randint(8, size=2)image[x, y] = 1print('选取前景像素后的图片:\n', image)# 定义距离接口
def dist(p1, p2, metric='D4'):if metric == 'D4':return abs(p1[0] - p2[0]) + abs(p1[1] - p2[1])elif metric == 'D8':return max(abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))# 生成距离矩阵
matrix = np.zeros_like(image)
for i in range(image.shape[0]):for j in range(image.shape[1]):# 背景像素的距离为 0if image[i, j] == 0:matrix[i, j] = 0else:  # 初始化为一个巨大的数字min_dist = 99999           for m in range(image.shape[0]):for n in range(image.shape[1]):# 只计算背景像素的距离if image[m, n] == 0:d = dist((i, j), (m, n), metric='D4')if d < min_dist:min_dist = dmatrix[i, j] = min_distprint('距离变换后的结果:\n', matrix)# 可视化显示
plt.imshow(image, cmap='gray')
plt.title('Original Image')
plt.show()plt.imshow(matrix, cmap='cool')
plt.title('Distance Transformed Image')
plt.colorbar()
plt.show()

在这里,我们使用灰度图像表示原始图像,黑色像素点表示随机生成的像素点。使用“cool”颜色映射可视化距离变换的结果。
在这里插入图片描述
在这里插入图片描述

本文介绍了计算机视觉中的距离度量,并使用随机生成的像素点进行了测试,并对计算结果进行了可视化展示。

通过上述代码,我们可以得到距离变换后的结果。在结果中,黑色像素点表示随机生成的前景像素点,其他颜色表示每个像素点到最近的前景像素点的距离。我们可以看到,距离变换后的图像可以清晰地展示出各个像素点到前景像素点的距离信息。较远的像素点呈现较浅的颜色,而较近的像素点呈现较深的颜色。

总结

距离度量在计算机视觉CV领域有着广泛的应用。如图像分割、图像配准、目标检测和目标跟踪等任务中,都需要计算像素之间的距离来对图像进行处理和分析。而距离变换则可以帮助我们更好地理解像素之间的关系和结构,并为后续的图像处理工作提供基础和参考。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/153935.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Arcgis日常天坑问题(1)——将Revit模型转为slpk数据卡住不前

这段时间碰到这么一个问题&#xff0c;revit模型在arcgis pro里导出slpk的时候&#xff0c;卡在98%一直不动&#xff0c;大约有两个小时。 首先想到的是revit模型过大&#xff0c;接近300M。然后各种减小模型测试&#xff0c;还是一样的问题&#xff0c;大概花了两天的时间&am…

基于ffmpeg给视频添加时间字幕

FFmpeg是一套可以用来记录、转换数字音频、视频&#xff0c;并能将其转化为流的开源计算机程序&#xff0c;我们可以基于ffmpeg对视频进行各种操作。本文主要介绍基于ffmpeg给视频添加字幕&#xff0c;字幕的内容为视频所播放的时间&#xff08;故需要安装ffmpeg&#xff0c;具…

【Python】实现excel文档中指定工作表数据的更新操作

在做数值计算时&#xff0c;个人比较习惯利用excel文档的公式做数值计算进行对比&#xff0c;检查异常&#xff0c;虽然计算量大后&#xff0c;excel计算会比较缓慢&#xff0c;但设计简单&#xff0c;易排错 但一般测试过程中使用到的数据都不是最终数值&#xff0c;会不停根据…

【chrome基础】Chrome、Chromium、libcef、electron版本关系大揭秘!

文章目录 概述chrome、Chromium、cef、electron 版本管理chrome的各种概念和学习资料V8 bindings 设计谷歌V8引擎探秘&#xff1a;基础概念Chrome 的插件&#xff08;Plugin&#xff09;与扩展&#xff08;Extension&#xff09;Chrome插件开发 概述 Chrome、Chromium、libcef、…

使用GitLab CI/CD 定时运行Playwright自动化测试用例

创建项目并上传到GitLab npm init playwright@latest test-playwright # 一路enter cd test-playwright # 运行测试用例 npx playwright test常用指令 # Runs the end-to-end tests. npx playwright test# Starts the interactive UI mode. npx playwright

Oracle 简介与 Docker Compose部署

最近&#xff0c;我翻阅了在之前公司工作时的笔记&#xff0c;偶然发现了一些有关数据库的记录。当初&#xff0c;我们的项目一开始采用的是 Oracle 数据库&#xff0c;但随着项目需求的变化&#xff0c;我们不得不转向使用 SQL Server。值得一提的是&#xff0c;公司之前采用的…

Servlet

Servlet Servlet是Java提供的一门动态web资源开发技术&#xff0c;其实就是一个接口&#xff08;规范&#xff09;&#xff0c;将来我们需要自定义Servlet类实现Servlet接口即可&#xff0c;并由web服务器运行Servlet。 快速入门 创建Web项目&#xff0c;导入Servlet依赖坐标…

linux 安装下载conda并创建虚拟环境

目录 1. 下载安装2. 创建虚拟环境1. 下载安装 在window操作系统中下载anconda包,并通过scp传输到ubuntu操作系统 具体anconda包在如下界面: anconda包 目录 博主选择了最新的包:Anaconda3-2023.09-0-Linux-x86_64.sh 通过scp传输到ubuntu操作系统中: 并在ubuntu操作系…

8、Docker数据卷与数据卷容器

一、数据卷(Data Volumes) 为了很好的实现数据保存和数据共享&#xff0c;Docker提出了Volume这个概念&#xff0c;简单的说就是绕过默认的联合文件系统&#xff0c;而以正常的文件或者目录的形式存在于宿主机上。又被称作数据卷。 数据卷 是一个可供一个或多个容器使用的特殊目…

信息系统项目管理师第四版学习笔记——项目进度管理

项目进度管理过程 项目进度管理过程包括&#xff1a;规划进度管理、定义活动、排列活动顺序、估算活动持续时间、制订进度计划、控制进度。 规划进度管理 规划进度管理是为规划、编制、管理、执行和控制项目进度而制定政策、程序和文档的过程。本过程的主要作用是为如何在…

【17】c++设计模式——>原型模式

原型模式的定义 c中的原型模式&#xff08;Prototype Pattern&#xff09;是一种创建型设计模式&#xff0c;其目的是通过复制&#xff08;克隆&#xff09;已有对象来创建新的对象&#xff0c;而不需要显示的使用构造函数创建对象&#xff0c;原型模式适用于创建复杂对象时&a…

vue3+vite+ts中的@的配置

文章 前言错误场景问题分析解决方案后言 前言 ✨✨ 我们是天生勇敢的开发者&#xff0c;我们创造bug&#xff0c;传播bug&#xff0c;毫不留情地消灭bug&#xff0c;在这个过程中我们创造了很多bug以供娱乐。 错误场景 vue3 vite ts 问题分析 在vue3的项目开发中我遇到了这样…

【Linux】 vi / vim 使用

天天用vim 或者vi 。看着大佬用的很6 。我们却用的很少。今天咱们一起系统学习一下。 vi / vim 发展史 vi 是一款由加州大学伯克利分校&#xff0c;Bill Joy研究开发的文本编辑器。 vim Vim是一个类似于Vi的高度可定制的文本编辑器&#xff0c;在Vi的基础上改进和增加了很多…

35.树与二叉树练习(1)(王道第5章综合练习)

【所用的树&#xff0c;队列&#xff0c;栈的基本操作详见上一节代码】 试题1&#xff08;王道5.3.3节第3题&#xff09;&#xff1a; 编写后序遍历二叉树的非递归算法。 参考&#xff1a;34.二叉链树的C语言实现_北京地铁1号线的博客-CSDN博客https://blog.csdn.net/qq_547…

使用asp.net core web api创建web后台,并连接和使用Sql Server数据库

前言&#xff1a;因为要写一个安卓端app&#xff0c;实现从服务器中获取电影数据&#xff0c;所以需要搭建服务端代码&#xff0c;之前学过C#&#xff0c;所以想用C#实现服务器段代码用于测试&#xff0c;本文使用C#语言&#xff0c;使用asp.net core web api组件搭建服务器端&…

前端uniapp如何修改下拉框uni-data-select下面的uni-icons插件自带的图片【修改uniapp自带源码图片/图标】

目录 未改前图片未改前源码未改前通过top和bottom 和修改后图片转在线base64大功告成最后 未改前图片 未改前源码 然后注释掉插件带的代码&#xff0c;下面要的 未改前通过top和bottom 和修改后 找到uni-icons源码插件里面样式 图片转在线base64 地址 https://the-x.cn/b…

图像上传功能实现

一、后端 文件存放在images.path路径下 package com.like.common;import jakarta.servlet.ServletOutputStream; import jakarta.servlet.http.HttpServletResponse; import org.springframework.beans.factory.annotation.Value; import org.springframework.web.bind.annot…

大数据编程实验3 熟悉常用的HBase操作前期准备

一、实验目的 &#xff08;1&#xff09;理解HDFS在Hadoop体系结构中的角色&#xff1b; &#xff08;2&#xff09;熟练使用HDFS操作常用的Shell命令&#xff1b; &#xff08;3&#xff09;熟悉HDFS操作常用的Java API。 二、实验平台 1. 操作系统&#xff1a;Linux&#x…

【JavaEE】多线程进阶(一)饿汉模式和懒汉模式

多线程进阶&#xff08;一&#xff09; 文章目录 多线程进阶&#xff08;一&#xff09;单例模式饿汉模式懒汉模式 本篇主要引入多线程进阶的单例模式&#xff0c;为后面的大冰山做铺垫 代码案例介绍 单例模式 非常经典的设计模式 啥是设计模式 设计模式好比象棋中的 “棋谱”…

springboot项目中后台文件上传处理

参考地址:http://www.gxcode.top/code 文件上次核心处理代码: @Autowired private FileUpload fileUpload; //获取资源对象:file-upload-prod.properties@ApiOperation(value = "用户头像修改", notes = "用户头像修改", httpMethod =