极客说|Azure AI Agent Service 结合 AutoGen/Semantic Kernel 构建多智能体解决⽅案

作者:卢建晖 - 微软高级云技术布道师

 「极客说」 是一档专注 AI 时代开发者分享的专栏,我们邀请来自微软以及技术社区专家,带来最前沿的技术干货与实践经验。在这里,您将看到深度教程、最佳实践和创新解决方案。关注「极客说」,与行业顶尖专家一起探索科技的无限可能!

在 Microsoft Ignite 2024 上,微软发布了 Azure AI Agent Service,我们可以在 Azure AI Foundry 上通过 Azure AI Foundry SDK 及 Azure AI Agent Service 的 UI 直接构建基于智能业务的 AI Agent。

与 Azure AI Assistant API 相比,Azure AI Agent Service 可以让我们拥有更灵活的模型,如可以直接调⽤ Llama 3、Mistral 以及 Cohere 等开源⼤模型,有更好的企业功能接入(Microsoft Fabric、Microsoft SharePoint、Azure AI Search、Microsoft Bing 等),更强的企业安全机制以及数据存储⽅式。

目前 Azure AI Agent Service 处于 Public Preview 阶段,开发者可以通过 Azure AI Foundry SDK,使用 Python 或者 C# 快速构建基于 Azure AI Agent Service 的智能体;企业则基于业务拥有不同的 AI Agents。

那在⼯作流中应该如何组合这些 AI Agents 呢?我们就需要通过 AutoGen 或者 Semantic Kernel 对这三个 AI Agents 进⾏编排。

在 Azure AI Foundry SDK 创建 AI Agent 的技巧


建议使用以下模板在 Azure AI Foundry 中创建项⽬:

https://portal.azure.com/#create/Microsoft.Template

注意

1. 目前 Azure AI Agent Service 处于 Public Preview 阶段,所以我们需要在特定区域和模型中使⽤。

当然你也可以使⽤ Azure AI Foundry model catalog 中的:

  • Llama 3.1-70B-instruct

  • Mistral-large-2407

  • Cohere command R+

2. Azure AI Foundry SDK 现在⽀持 Python / C# 的版本

安 装 Python 的 Azure AI Foundry SDK

pip install azure-ai-projects
pip install azure-identity

安 装 .NET 的 Azure AI Foundry SDK

dotnet add package Azure.AI.Projects --version 1.0.0-beta.1

如果你希望了解如何结合 Azure AI Foundry SDK 创建 AI Agent ,建议参考:

https://learn.microsoft.com/en-us/azure/ai-services/agents/quickstarticon-default.png?t=O83Ahttps://learn.microsoft.com/en-us/azure/ai-services/agents/quickstart

下⾯介绍⼀个场景,如⼀个 Blog 创作场景,我们可以围绕该创作场景定义三个 AI Agent Service 服务:内容搜集的 Agent、编写技能的 Agent、以及保存内容功能的 Agent,然后通过 AutoGen / Semantic Kernel 对 AI Agent 进⾏编排。

Azure AI Agent Service 定义单智能体


Azure AI Agent Service 更多是对特定智能任务的单 Agent 进⾏定义,比如你可以定义⼀个数据挖掘的智能体,也可以定义⼀个链接 Azure Function 的智能体,更可以利⽤ Function Calling 接入第三⽅邮件发送服务的智能体等。如上述场景谈及的智能体我们可以这样定义:

🔍 内容搜集的 Agent

内容搜集的 Agent 主要通过搜索引擎来搜索 Blog 提纲的内容,从⽽为 Blog 添加更详细的内容。Azure AI Agent Service 提供了 Grounding with Bing 服务进行扩展,你可以非常简单地接入 Bing 搜索中。

具体实现:

  • Python

    https://github.com/kinfey/MultiAIAgent/blob/main/03.AzureAIAgentWithAutoGen01.ipynbicon-default.png?t=O83Ahttps://github.com/kinfey/MultiAIAgent/blob/main/03.AzureAIAgentWithAutoGen01.ipynb

  • C#

    https://github.com/kinfey/MultiAIAgent/blob/main/08.AzureAIAgentWithSK01.ipynbicon-default.png?t=O83Ahttps://github.com/kinfey/MultiAIAgent/blob/main/08.AzureAIAgentWithSK01.ipynb

📖编写技能的 Agent

编写技能的 Agent 可以直接通过 LLM 完成编写的内容。

🛠 保存内容功能的 Agent

保存内容功能的 Agent 通过 Azure AI Agent Service 的 code-interpreter 完成内容保存⼯作。

具体实现:

  • Python

    https://github.com/kinfey/MultiAIAgent/blob/main/01.AzureAIAgentCode.ipynbicon-default.png?t=O83Ahttps://github.com/kinfey/MultiAIAgent/blob/main/01.AzureAIAgentCode.ipynb

  • C#

    https://github.com/kinfey/MultiAIAgent/blob/main/05.AzureAIAgentCodedotNET.ipynbicon-default.png?t=O83Ahttps://github.com/kinfey/MultiAIAgent/blob/main/05.AzureAIAgentCodedotNET.ipynb

利⽤ AutoGen / Semantic Kernel 编排多智能体


在企业场景中,我们拥有不同的单智能体,可以协助我们完成不同的工作,同时,基于不同任务又可以组合不同的智能体来完成相关⼯作。如需要发送 Blog,我们可以将上述的三个智能体进⾏组合来完成任务。AutoGen / Semantic Kernel 都支持智能体的编排⼯作,我们可以利⽤ AutoGen 中的 Function Calling / Semantic Kerenl Plugin 进行 Azure AI Agent Service 的绑定来完成上述三个智能体的编排⼯作。

以下是具体架构:

AutoGen 的编排⽅式

示例:

https://github.com/kinfey/MultiAIAgent/blob/main/04.AzureAIAgentWithAutoGen02.ipynbicon-default.png?t=O83Ahttps://github.com/kinfey/MultiAIAgent/blob/main/04.AzureAIAgentWithAutoGen02.ipynb

Semantic Kernel 的编排⽅式

通过编排多智能体,我们可以非常轻松地完成不同需要的⼯作流,这⾥是两个不同的指令,都可以完成博客的编写⼯作。

示例:

https://github.com/kinfey/MultiAIAgent/blob/main/09.AzureAIAgentWithSK02.ipynbicon-default.png?t=O83Ahttps://github.com/kinfey/MultiAIAgent/blob/main/09.AzureAIAgentWithSK02.ipynb

多智能体的结合可以帮助我们快速地完成不同的任务。随着 LLM / SLM 能⼒的增强,也会在企业业务功能上有更好的融合。AI Agent as a Service 将会到来,结合多智能体帮助企业更轻松地构建和部署智能 AI 代理,更快迈进真正的 AI 时代。

相关资源

了解 Azure AI Agent Service icon-default.png?t=O83Ahttps://learn.microsoft.com/en-us/azure/ai-services/agents/

学习 Microsoft AutoGen icon-default.png?t=O83Ahttps://microsoft.github.io/autogen/dev/

学习 Microsoft Semantic Kernel icon-default.png?t=O83Ahttps://github.com/microsoft/semantic-kernel

资料推荐


智能 GitHub Copilot 副驾驶® 提示和技巧icon-default.png?t=O83Ahttps://info.microsoft.com/GC-DevOps-CNTNT-FY25-08Aug-23-Smart-GitHub-Copilot-Tips-and-Tricks-SRGCM12801_LP01-Registration---Form-in-Body.html

Azure OpenAI 生成式人工智能白皮书icon-default.png?t=O83Ahttps://info.microsoft.com/GC-AzureAI-CNTNT-FY25-08Aug-21-Azure-OpenAI-Generative-Artificial-Intelligence-White-Paper-SRGCM12789_LP01-Registration---Form-in-Body.html

利用 AI 和 DevOps 重新定义开发人员体验icon-default.png?t=O83Ahttps://info.microsoft.com/ww-landing-redefining-the-developer-experience.html?lcid=ZH-CN

SAP on Microsoft Cloudicon-default.png?t=O83Ahttps://info.microsoft.com/GC-SAP-CNTNT-FY25-08Aug-27-SAP-on-Microsoft-Cloud-SRGCM12804_LP01-Registration---Form-in-Body.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/1578.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MMDetection框架下的常见目标检测与分割模型综述与实践指南

目录 综述与实践指南 SSD (Single Shot MultiBox Detector) 基本配置和使用代码 RetinaNet 基本配置和使用代码 Faster R-CNN 基本配置和使用代码 Mask R-CNN 基本配置和使用代码 Cascade R-CNN 基本配置和使用代码 总结 综述与实践指南 MMDetection是一个基于Py…

服务器数据恢复—EMC存储POOL中数据卷被删除的数据恢复案例

服务器数据恢复环境&故障: EMC Unity 400存储连接了2台硬盘柜。2台硬盘柜上一共有21块硬盘(520字节)。21块盘组建了2组RAID6:一组有11块硬盘,一组有10块硬盘。 在存储运行过程中,管理员误操作删除了 2组…

Leetcode 377. 组合总和 Ⅳ 动态规划

原题链接&#xff1a;Leetcode 377. 组合总和 Ⅳ 可参考官解 class Solution { public:int combinationSum4(vector<int>& nums, int target) {vector<int> dp(target 1);dp[0] 1;// 总和为 i 的元素组合的个数for (int i 1; i < target; i) {// 每次都…

Ubuntu上,ffmpeg如何使用cuda硬件解码、编码、转码加速

本文使用 Ubuntu 环境。Ubuntu 直接使用 APT 安装的就支持 CUDA 加速。本文使用这样下载的版本进行演示&#xff0c;你自己编译或者其他源的版本可能会不同。 ffmpeg 的一些介绍&#xff0c;以及 macOS 版本的 ffmpeg 硬件加速请见《macOS上如何安装&#xff08;不需要编译安装…

【端云一体化】云函数的使用

前言 为丰富HarmonyOS对云端开发的支持、实现端云联动&#xff0c;DevEco Studio以Cloud Foundation Kit&#xff08;云开发服务&#xff09;为底座、在传统的“端开发”基础上新增“云开发”能力&#xff0c;开发者在创建工程时选择合适的云开发工程模板&#xff0c;即可在De…

vLLM私有化部署大语言模型LLM

目录 一、vLLM介绍 二、安装vLLM 1、安装环境 2、安装步骤 三、运行vLLM 1、运行方式 2、切换模型下载源 3、运行本地已下载模型 四、通过http访问vLLM 一、vLLM介绍 vLLM&#xff08;官方网址&#xff1a;https://www.vllm.ai&#xff09;是一种用于大规模语言模型&#x…

【Linux 之一 】Linux常用命令汇总

Linux常用命令 ./catcd 命令chmodclearcphistoryhtoplnmkdirmvpwdrmtailunamewcwhoami 我从2021年4月份开始才开始真正意义上接触Linux&#xff0c;最初学习时是一脸蒙圈&#xff0c;啥也不会&#xff0c;啥也不懂&#xff0c;做了很多乱七八糟&#xff0c;没有条理的笔记。不知…

蓝牙BT04-A的使用与相关AT指令

一、AT指令没有返回的问题及解决方案 检查指令格式&#xff1a; 确认指令格式是否正确&#xff0c;包括特定的命令和结尾的回车换行符&#xff08;n&#xff09;。 检查TX/RX连接&#xff1a; 确认TX&#xff08;发送&#xff09;和RX&#xff08;接收&#xff09;线是否连接正…

国产Docker可视化面板Dpanel的安装与功能解析

国产Docker可视化面板Dpanel的安装及功能介绍 Docker 可视化面板系统&#xff0c;提供完善的 docker 管理功能。 支持查看基本信息、运行状态统计、网络统计、磁盘统计、用量统计等功能 ​​ ​​ 容器管理&#xff1a; ​​ 创建/修改容器 ​​ 支持基本配置、环境变量、…

金融项目实战 06|Python实现接口自动化——日志、认证开户接口

一、日志封装及应用&#xff08;理解&#xff09; &#x1f534;日志的作用&#xff1a; 记录程序运行的步骤和错误。 &#x1f534;日志的场景&#xff1a; 1、调试bug2、查看程序运行轨迹 &#x1f534;日志基本应用&#xff1a; # 1、导包 import logging # 2、调用日…

第423场周赛:检测相邻递增子数组 Ⅰ、检测相邻递增子数组 Ⅱ、好子序列的元素之和、统计小于 N 的 K 可约简整数

Q1、检测相邻递增子数组 Ⅰ 1、题目描述 给你一个由 n 个整数组成的数组 nums 和一个整数 k&#xff0c;请你确定是否存在 两个 相邻 且长度为 k 的 严格递增 子数组。具体来说&#xff0c;需要检查是否存在从下标 a 和 b (a < b) 开始的 两个 子数组&#xff0c;并满足下…

vue 与 vue-json-viewer 实现 JSON 数据可视化

前言 接口的调试和测试是确保系统稳定性的重要步骤。为了让开发人员和测试人员能够直观地查看接口返回的 JSON 数据&#xff0c;使用合适的工具至关重要。vue-json-viewer 插件为 vue 开发者提供了一个简单而强大的解决方案。本文将详细介绍如何在 vue 项目中使用该插件&#x…

开源项目stable-diffusion-webui部署及生成照片

参考链接 https://www.freedidi.com/13133.html 基础环境部署 python 官网链接 Python Release Python 3.10.6 | Python.org 下载 Python 3.10.6 版本安装包 下载好后双击 点击安装&#xff0c;这里需要选择一下&#xff0c;把环境变量加上。&#xff08;这里是默认安装到C盘…

宝塔面板 申请证书后 仍然提示不安全

证书显示有效&#xff0c;但是网站显示不安全 导致的原因是引入静态文件使用的是HTTP&#xff0c;查看方法为F12打开console控制台 可以看到静态文件全部都是HTTP 网站采用wordpress搭建&#xff0c;基于问题解决&#xff0c;其他方式搭建也是一样&#xff0c;处理掉所有的H…

14X505-1《火灾自动报警系统设计规范图示》中相关数据和总线制的个人理解

目录 内容简介一、设计容量1.1 设备总数or地址总数1.2 报警与联动合用总线怎么办1.3 10%余量 二、总线短路隔离器2.1 设备总数or地址总数2.2 短路隔离器计入设备数吗2.3 电源要隔离吗2.4 穿越没有设备的防火分区要加短路隔离吗2.5 思考&#xff1a;一个回路可以带几个短路隔离器…

PCB印刷电路板快速上手04电容元件

1.电容元件 电容&#xff1a;又叫电容器&#xff0c;是指容纳电荷本领的物理量。 电容元件是表征电路元件储存电荷特性的理想元件&#xff0c;在电路分析学科中是除电阻元件、电感元件以外的基本电路元件。 电容一般用通常用“C”表示&#xff08;Capacitance&#xff09; 电…

风水算命系统架构与功能分析

系统架构 服务端&#xff1a;Java&#xff08;最低JDK1.8&#xff0c;支持JDK11以及JDK17&#xff09;数据库&#xff1a;MySQL数据库&#xff08;标配5.7版本&#xff0c;支持MySQL8&#xff09;ORM框架&#xff1a;Mybatis&#xff08;集成通用tk-mapper&#xff0c;支持myb…

HarmonyOS NEXT开发进阶(六):HarmonyOS NEXT实现嵌套 H5 及双向通信

文章目录 一、前言二、鸿蒙应用加载Web页面2.1 加载网络地址页面2.2 加载本地H5页面 三、实现Web组件 H5 层与鸿蒙应用层进行相互通讯3.1 鸿蒙应用向 H5 页面发送数据3.2 H5页面向鸿蒙应用发送数据 四、拓展阅读 一、前言 随着HarmonyOS NEXT的快速发展&#xff0c;越来越多的…

OPT: Open Pre-trained Transformer语言模型

摘要 大规模语言模型通常需要数十万计算日的训练时间&#xff0c;展现了在零样本和小样本学习中的显著能力。鉴于其计算成本之高&#xff0c;这些模型在没有大量资本投入的情况下难以复现。对于那些通过API提供的少数模型&#xff0c;研究者无法获取完整的模型权重&#xff0c…

探索图像编辑的无限可能——Adobe Photoshop全解析

文章目录 前言一、PS的历史二、PS的应用场景三、PS的功能及工具用法四、图层的概念五、调整与滤镜六、创建蒙版七、绘制形状与路径八、实战练习结语 前言 在当今数字化的世界里&#xff0c;视觉内容无处不在&#xff0c;而创建和编辑这些内容的能力已经成为许多行业的核心技能…