数据分析与数据挖掘实战案例本地房价预测(716):

数据分析与数据挖掘实战案例(7/16):

2022 年首届钉钉杯大学生大数据挑战赛练习题目 练习题 A:二手房房价分析与预测

要点:

1、机器学习

2、数据挖掘

3、数据清洗、分析、pyeahcrs可视化

4、随机森林回归预测模型预测房价

整体代码:

在这里插入图片描述

过程代码:

1、读入数据、清洗数据:

import pandas as pd
import numpy as np
df=pd.read_csv("data.csv",encoding='utf-8')  #文件路径为绝对路径,根据自己电脑文件夹的路径修改
dfdf.info() #查看df信息df.dropna(inplace=True) #删除空值行
df.drop('Unnamed: 0',axis=1,inplace=True)  #删除无用列
dfdf=df.drop_duplicates()  ###消除重复记录
df

在这里插入图片描述

2、解决相关问题:

(一) 根据附件中的数据集,将二手房数据按照“区域”属性进行划分,然后计算每个 区域的二手房均价,最后将区域及对应的房屋均价信息通过纵向条形图显示 :
import re 
zonjia = []
for v in df['总价']:a = re.findall(r'\d+',str(v))[0] 
#     print(a)zonjia.append(int(a))
df['总价1'] = zonjia
df   #得到数字类型的总价1df1_1 = df[['区域','总价1']].groupby('区域').mean()
df1_1.columns = ['区域均价'] 
df1_1['区域均价']  = df1_1['区域均价'].astype(int)
df1_1#画图:
from pyecharts.charts import Bar
from pyecharts import options as opts
%matplotlib inlinebar = Bar()
bar.add_xaxis(list(df1_1.index)) 
bar.add_yaxis("单位:万", list(df1_1['区域均价']))bar.set_global_opts(title_opts=opts.TitleOpts(title="区域房屋均价"))
bar.render_notebook()
# bar.render()  #生成html

在这里插入图片描述

(二) 根据附件的数据集,计算各个区域二手房数量占总二手房数量的百分比,并画出 饼状图 :
df['计数'] =1
df1_2 = df[['区域','计数']].groupby('区域').count()
df1_2  #得到统计数据的dataform表格#画图:
from pyecharts.charts import Pie
from pyecharts import options as opts
# 富文本
rich_text = {"a": {"color": "#999", "lineHeight": 22, "align": "center"},"abg": {"backgroundColor": "#e3e3e3","width": "100%","align": "right","height": 22,"borderRadius": [4, 4, 0, 0],},"hr": {"borderColor": "#aaa","width": "100%","borderWidth": 0.5,"height": 0,},"b": {"fontSize": 16, "lineHeight": 33},"per": {"color": "#eee","backgroundColor": "#334455","padding": [2, 4],"borderRadius": 2,},
}# 虚假数据
cate = list(df1_2.index)
data = list(df1_2['计数']) pie = (Pie().add('二手房数量', [list(z) for z in zip(cate, data)],label_opts=opts.LabelOpts(position='outsiede',formatter="{a|{a}}{abg|}\n{hr|}\n {b|{b}: }{c}  {per|{d}%}  ",rich=rich_text)))pie.render_notebook()

在这里插入图片描述

(三) 将二手房按照“装修”属性进行划分,然后计算不同装修程度的二手房数量,并 用条形图显示不同装修程度二手房的数量。 :
df1_3 = df[['装修','计数']].groupby('装修').count()
df1_3from pyecharts.charts import Bar
from pyecharts import options as opts
%matplotlib inlinebar = Bar()
bar.add_xaxis(list(df1_3.index))  
bar.add_yaxis("统计数量", list(df1_3['计数']))bar.set_global_opts(title_opts=opts.TitleOpts(title="装修程度统计"))
bar.render_notebook()
# bar.render()  #生成html

在这里插入图片描述

3、机器学习随机森林建模预测房价:

(一)将二手房按照户型进行分组,然后提取前 5 组最热门的二手房户型(出售数量最多的 5 组户型),最后计算这 5 个热门户型的均价并画图显示。
df2_1 = df[['户型','计数']].groupby('户型').count()
df2_1
df2_1.sort_values(by='计数',axis=0,ascending=False,inplace=True)
df2_1names = list(df2_1.index[0:5])
namesdf2_1_1 = df[['户型','总价1']].groupby('户型').mean()
df2_1_1
datas = []
for v in names:datas.append(int(df2_1_1.loc[v]))
datasfrom pyecharts import options as opts
from pyecharts.charts import Bar,Line,Grid
B = ["草莓","芒果","葡萄","雪梨","西瓜","柠檬","车厘子"]
CB = [78,95,120,102,88,108,98]line = Line()
line.add_xaxis(names)line.add_yaxis("均价单位:万",datas)
line.set_global_opts(title_opts=opts.TitleOpts(title="最热五户型均价"),legend_opts=opts.LegendOpts())
line.render_notebook()

在这里插入图片描述

(二)选择附件中适合的属性,建立模型预测二手房的价格

在这里插入图片描述

特征工程:(提取出数字数据, 拆分数据、特征编码等:)

df2 = df.drop(['小区名字','计数','总价'],axis=1)   #删除明显无关的特征列
df2# 字符型数据和离散型数据转为数字特征:df2['建筑面积1'] = df2['建筑面积'].str[:-2]
df2 
df2['单价1'] = df2['单价'].str[:-4]
df2 shi = []
ting = []
wei = []
for v in df2['户型']:re_ = re.findall(r'\d+',v) 
#     print(re_)if len(re_) >=3:shi.append(re_[0])ting.append(re_[1])wei.append(re_[2])else:shi.append(0)ting.append(0)wei.append(0)df2['室'] = shi
df2['厅'] =ting
df2['卫'] =weidf2df2 = df2.drop(['户型','建筑面积','单价'],axis=1)  #删除无用的列
df2df2 = df2.drop(['户型','建筑面积','单价'],axis=1)  #删除无用的列
df2# 将字符标签或者类别数字化
df2['朝向'] = pd.Categorical(df2['朝向']).codes
df2
df2['楼层'] = pd.Categorical(df2['楼层']).codes
df2['装修'] = pd.Categorical(df2['装修']).codes
df2['区域'] = pd.Categorical(df2['区域']).codes
df2 

在这里插入图片描述

建模:
y=df2.iloc[:,-4]  #目标列
y
x=df2.drop('单价1',axis=1)
x #特征列数据
#划分数据集:
from sklearn.model_selection import train_test_splitx_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.30,random_state=100,)
# 显示训练集和测试集的维度
print("x_train.shape:",x_train.shape)
print("x_test.shape:",x_test.shape)
print("y_train.shape:",y_train.shape)
print('y_test.shape:',y_test.shape)

在这里插入图片描述

from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV
# 随机森林去进行预测
rf = RandomForestRegressor()#设置网格超参数
param = {"n_estimators": [120,200,300,500,800,1200], "max_depth": [5, 8, 15, 25, 30]}# 超参数调优
gc = GridSearchCV(rf, param_grid=param, cv=2)   #网格搜索与交叉验证gc.fit(x_train, y_train)
y_pre=gc.predict(x_test)
print(y_pre)#输出预测值
print("随机森林预测的准确率为:", gc.score(x_test, y_test))   #会运行一段时间

在这里插入图片描述

print("最佳参数:",gc.best_params_)
print("最佳分数:",gc.best_score_)
print("最佳估计器:",gc.best_estimator_)
print("交叉验证结果:\n",gc.cv_results_)

在这里插入图片描述

最后(源码):

这样一个简单的数据挖掘实践案例就做好了,我还有很多平时积累的案例,后续我会持续编写分享的,如果您觉得有一定的意义,请点个关注呗,您的支持是我创作的最大动力,如果需要源码

链接:https://pan.baidu.com/s/1BIXUNwOrSEydEskuOB-_6g
提取码:8848

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/15831.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【项目实战】北京二手房房价分析与预测

项目简介 本项目根据个人需求进行北京二手房信息的数据分析,通过数据分析观察住房特征规律,利用机器学习模型进行简单的预测。 数据源 通过爬虫爬取第三方房屋中间商网站(链家和安居客)获取数据源,仅供学习使用。 目…

房屋价格预测相关公开数据集

House pricing 房屋价格预测 背景描述 使用高级回归技术查看预测的房屋销售价格 数据说明 包含交易ID和交易价格 数据展示 ​数据下载 DataCastle-数据科学创新与实践平台 房屋价格 数据说明 两个文件测试集和训练集,包含房屋容纳人数、洗手间数量、卧室数量、…

Python数据分析之房价预测

学习数据分析的第一次练手项目。从网上爬取关于房价的相关数据属性来分析房价,并且基于一些属性来预测房价,使用的是网格搜索算法。相关的数据文件和完整代码可以从文末获取。 GridSearchCV介绍: 能够系统地遍历多种参数组合,通过…

台北房价预测

目录 1.数据理解1.1分析数据集的基本结构,查询并输出数据的前 10 行和 后 10 行1.2识别并输出所有变量 2.数据清洗2.1输出所有变量折线图2.2缺失值处理2.3异常值处理 3.数据分析3.1寻找相关性3.2划分数据集 4.数据整理4.1数据标准化 5.回归预测分析5.1线性回归&…

某地房价预测

房价预测 任务目标:预测未来的房价 处理步骤 导入数据集,进行数据质量分析与数据清洗;数据特征分析(分布分析、统计量分析、相关性分析);特征工程(特征降维、特征选择)&#xff1…

房价预测数据集 (KAGGLE)

文章目录 引入1 库引入2 数据处理完整代码 引入 KAGGLE房价预测数据集分为训练集和测试集。两个数据集都包括每栋房子的特征,如街道类型、建造年份、房价类型等特征。特征值有连续的数字、离散的标签、缺失值 (na)等。   训练集与测试集的区别在于:只有…

案例:房价预测模型

案例目标:根据房子特征,预测某房房价,选出最优模型。 主要步骤: 1. 数据清洗。数据分类,缺失值和异常值处理。 2. 特征分析。统计量分析和相关性分析。 3. 特征工程。特征选择和特征融合。 4. 模型构建。特征标准…

房价预测模型

目录 1.模型目标 预测某一区域的房价中位数 2.选择框架 有监督学习任务:训练集中的每个实例都有标签(该区域的房价中位数)回归任务:因为你要对某个值进行预测。更具体地说,这是一个多重回归问题,因为系统要使用多个特征进行预…

房屋价格预测

机器学习——房屋价格预测 点击链接查看文档代码 一.项目概述及计划 项目背景 :影响房屋价格的因素众多,如房屋面积、房屋层数、配套设施等等。 项目要求 :利用竞赛提供的数据,通过分析影响房屋价格的诸多因素来对房…

数据分析项目——深圳二手房价分析及价格预测

目录 一、需求说明 1.1基本任务 1.2 任务目的 1.3测试数据 二、概要设计说明 三、详细设计 3.1 数据检测模块 3.2 因变量分析模块 3.3 自变量分析模块 3.4 可视化模块 3.5 建立预测模型模块 3.6预测模块 一、需求说明 深圳二手房数据分析及价格预测的总体目标&#xff1a…

波士顿房价预测(终版讲解)

代码段分四个部分:库的引入、加载数据(函数)、配置网络结构(类)、运行部分(获取数据,创建网络,启动训练,作图) 我的是基础版,库只用到了numpy和ma…

基于大数据的房价数据可视化分析预测系统

温馨提示:文末有 CSDN 平台官方提供的博主 Wechat / QQ 名片 :) 1. 项目背景 房地产是促进我国经济持续增长的基础性、主导性产业,二手房市场是我国房地产市场不可或缺的组成部分。由于二手房的特殊性,目前市场上实时监测二手房市场房价涨幅的…

Kaggle房价预测详解

Kaggle房价预测详解 1.导入数据2.查看各项主要特征与房屋售价的关系查看中央空调与售价关系查看装修水平与房价关系查看建造日期与售价关系不同地段与房价关系查看地皮面积与房价关系查看地下室总面积与房价关系查看关联性 3.训练集数据预处理训练数据预处理创建机器学习模型得…

数据集:波士顿地区房价预测

数据集:波士顿地区房价预测 数据集下载地址 本文以线性回归模型预测为主 1. 数据集说明 变量名变量描述CRIM城镇人均犯罪率ZN住宅地超过25000平方英尺的比例INDUS城镇非零售商用土地的比例CHAS查理斯河空变量(如果边界是河流,则为1&#x…

AI for Science的上半场:人工智能如何重新定义科学研究新范式?

AI发展七十余年,每一技术性突破都将给人类未来开辟新一种可能性。而它与科学研究的深度融合,则会裂变出无数或无穷种可能性。 来源 :36氪 万众瞩目下,今年10月,有着诺贝尔奖“嫡传”之称的诺贝尔化学奖终于揭晓,授予了…

【分享NVIDIA GTC 23大会干货】加速生成式AI在生物学和医疗领域的应用

【分享NVIDIA GTC 23大会干货】加速生成式AI在生物学和医疗领域的应用 1. NVIDIA医疗领域AI计算平台——NVIDIA CLARA2. NVIDIA CLARA医学影像子平台——MONAI3. NVIDIA CLARA医疗设备子平台——Holoscan4. NVIDIA基因组学解决方案Parabricks5. NVIDIA药物研发解决方案6. 个人思…

GTC 2023 万字纪要 | Don‘t Miss This Defining Moment in AI

「Don’t Miss This Defining Moment in AI」 「切勿错过 AI 的决定性时刻」 北京时间 2023 年 3 月 21 日 23:00,「皮衣刀客」黄教主在 GTC 2023 发表主题如上的 Keynote 演讲,并称「这将是我们迄今为止最重要的一次 GTC」,NVIDIA官方 Twi…

「国际科技信息中心SCITIC论坛」细胞,基因和人工智能:探索医学研究的未来...

点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入! 随着科技的不断进步,我们现在拥有了许多前所未有的工具和技术,可以更深入地研究和了解人体内部的细胞和基因。人工智能技术的发展,也为医学研究带来了全新的机遇。例如&#…

明天10:00「国际科技信息中心SCITIC论坛」细胞,基因和人工智能:探索医学研究的未来...

点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入! 随着科技的不断进步,我们现在拥有了许多前所未有的工具和技术,可以更深入地研究和了解人体内部的细胞和基因。人工智能技术的发展,也为医学研究带来了全新的机遇。例如&#…

Nat. Biotechnol. | 生成式AI在生物科学领域发展迅速

在过去的一年中,人工智能迎来了突破性的技术,它们来自OpenAI的DALL-E2和ChatGPT。 Link: https://openai.com/dall-e-2 Link: https://openai.com/blog/chatgpt 或许你在网络上已经或多或少了解了一些,甚至已经在无意中使用过了这些技术所带来…