采用 guidance 提高大模型输出的可靠性和稳定性

本文首发于博客 LLM 应用开发实践

在复杂的 LLM 应用开发中,特别涉及流程编排和多次 LLM 调用时,每次的 Prompt 设计都取决于前一个步骤的大模型输出。如何避免大语言模型的"胡说八道",以提高大语言模型输出的可靠性和稳定性,成为一个具有挑战性的问题。在开发应用的过程中,我发现了微软推出的开源项目 guidance,能够很好地解决这一繁琐问题,本篇文章对此进行详细说明。

场景说明

首先分享下实际遇到的问题,我在做一个科普类视频内容纠正小工具,大概流程就是从视频中提取关键概念,并调用维基百科进行交叉验证:

  1. 解析科普视频字幕内容
  2. 让 LLM 分析是否存在错误科普片段
  3. 从错误科普片段上下文中提取相关概念
  4. 调用维基百科做纠正
  5. 生成一篇纠正性文章

下面是我一部分的 Prompt(提示词)设计示例:

Please act as an encyclopaedic expert covering the fields of physics, mathematics, chemistry and biology. The captioned content of a science video will be provided below. Please ensure that you fully understand the content of the video and then correct any scientific errors in it from a professional point of view. The content of the subtoc: true
titles of the video to be analysed is as follows:```{context}```
Your return must be in the specified json format, with the special character backslash \ escaped, always make sure that the json format cannot be wrong, and the content must be in English, like the following:
{"Misconception 1": "Relevant context error content 1","Misconception 2": "Relevant context error content 1",...
}

针对语言模型返回的内容,首先进行 json 解析,如果出错,再次请求(重复 3 次);如果解析正常,转换为字典进行遍历,将维基百科搜索的内容结合错误片段组成 Prompt,让大语言模型生成一篇纠正性文章。

发现问题

即使在 Prompt 中强调了语言模型返回 json 格式,但是实际调用过程中还会有 20 %的概率返回的不是 json 格式,只能通过重试规避,但是重试会再次大量消耗 token,肯定不是一个可行的方案。所以我在想是否可以做一个类似的工具,将上述过程(检查返回结果+生成错误信息)进行封装,且发生错误时只将解析错误的部分内容告知 LLM(节省 token),进行下一次的生成,不断重复直到符合要求,然后发现了 guidance,完美契合了我的需求,这篇文章将详细介绍这个工具。

guidance

guidance 是一个 Python 库,相比提示词方式或链式调用方式,可以更有效地控制和利用大型语言模型(如 GPT、BART 等)。 简单直观的语法,基于 Handlebars 模板,丰富的输出结构,具有函数调用、逻辑判断、控制流等功能,它的主要作用和优点包括:

  1. 简化输出结构设计
  • 通过模板语法可以设计各种输出结构逻辑:

    {{#if}}...{{else}}...{{/if}}
    {{#each}}...{{/each}}
    
  • 插入生成文本(遇到 gen 关键字,请求 LLM,获得响应后,继续解析语法树):

    {{gen "变量名"}}
    
  • 选择最佳选项:

    {{#select "变量名"}}选项1{{or}}选项2{{/select}}
    
  1. 推理加速

    与单次生成相比,guidance 可以自动把已经生成过的结果缓存起来,提升速度。

  2. 支持聊天对话

    {{#user}}...{{/user}}
    {{#assistant}}...{{/assistant}}
    
  1. 保证特定语法格式

    guidance 可以通过正则表达式指导语言模型生成保证语法正确的文本,例如生成 JSON 对象:

    {
    "name": "{{gen "name"}}",
    "age": "{{gen "age"}}"
    }
    
  2. 消除 token 边界效应

    所谓 token 边界效应会导致语言模型在生成文本时产生非预期的停止,guidance 通过一种叫“token healing”的方法可以消除这种效应,使用{{gen token_healing=True}}即可开启。

  3. 集成 Transformer

    from guidance.llms import Transformersllm = Transformers("gpt2")
    guidance(llm=llm)
    

实时流式传输

guidance 具有明确定义的线性执行顺序,该顺序直接对应于大语言模型处理 token 的顺序。在执行过程中的任何时候,大语言模型都可用于生成文本(当调用到{{gen}}命令时,便会触发 LLM 的生成操作)或做出逻辑控制流决策,允许进行精确的输出结构设计,从而产生清晰可解析的结果。

import guidance
guidance.llm = guidance.llms.OpenAI("text-davinci-003")program = guidance("""Tweak this proverb to apply to model instructions instead.{{proverb}}
- {{book}} {{chapter}}:{{verse}}UPDATED
Where there is no guidance{{gen 'rewrite' stop="\\n-"}}
- GPT {{#select 'chapter'}}9{{or}}10{{or}}11{{/select}}:{{gen 'verse'}}""")executed_program = program(proverb="Where there is no guidance, a people falls,\nbut in an abundance of counselors there is safety.",book="Proverbs",chapter=11,verse=14
)

实时流式传输

程序执行后,所有生成的变量都可以轻松访问:

>> executed_program["rewrite"]
>> ', a model fails,\nbut in an abundance of instructions there is safety.'

聊天对话模式

通过基于角色标记(如 {{#system}}...{{/system}} )的统一 API,guidance 支持 GPT-4 等基于 API 的聊天模型,以及 Vicuna 等开源聊天模型。

gpt4 = guidance.llms.OpenAI("gpt-4")
# vicuna = guidance.llms.transformers.Vicuna("your_path/vicuna_13B", device_map="auto")
experts = guidance('''
{{#system~}}
You are a helpful and terse assistant.
{{~/system}}{{#user~}}
I want a response to the following question:
{{query}}
Name 3 world-class experts (past or present) who would be great at answering this?
Don't answer the question yet.
{{~/user}}{{#assistant~}}
{{gen 'expert_names' temperature=0 max_tokens=300}}
{{~/assistant}}{{#user~}}
Great, now please answer the question as if these experts had collaborated in writing a joint anonymous answer.
{{~/user}}{{#assistant~}}
{{gen 'answer' temperature=0 max_tokens=500}}
{{~/assistant}}
''', llm=gpt4)experts(query='How can I be more productive?')

聊天对话模式

加速推理

# we use LLaMA here, but any GPT-style model will do
llama = guidance.llms.Transformers("your_path/llama-7b", device=0)# we can pre-define valid option sets
valid_weapons = ["sword", "axe", "mace", "spear", "bow", "crossbow"]# define the prompt
character_maker = guidance("""The following is a character profile for an RPG game in JSON format.
```json
{"id": "{{id}}","description": "{{description}}","name": "{{gen 'name'}}","age": {{gen 'age' pattern='[0-9]+' stop=','}},"armor": "{{#select 'armor'}}leather{{or}}chainmail{{or}}plate{{/select}}","weapon": "{{select 'weapon' options=valid_weapons}}","class": "{{gen 'class'}}","mantra": "{{gen 'mantra' temperature=0.7}}","strength": {{gen 'strength' pattern='[0-9]+' stop=','}},"items": [{{#geneach 'items' num_iterations=5 join=', '}}"{{gen 'this' temperature=0.7}}"{{/geneach}}]
}```""")# generate a character
character_maker(id="e1f491f7-7ab8-4dac-8c20-c92b5e7d883d",description="A quick and nimble fighter.",valid_weapons=valid_weapons,llm=llama
)

img

按照我之前的做法整个 json 都需要由 LLM 来生成,guidance 的思路是,既然 json 的结构是预先定义的,那么字段声明,花括号等等,其实都不需要 LLM 来生成。这个示例中,蓝色部分是传入的变量,只有绿色部分才是真正调用了 LLM 来生成的。这样一方面保证了生成的 json 结构可控,不会出现格式错误,字段缺失等,一方面通过 LLM 生成的 token 数量减少了,节省成本,加速推理。

回顾

guidance 本质上是一种用于处理大语言模型交互的领域特定语言 (DSL),和大语言模型查询语言一样,旨在降低 LLM 交互的成本。guidance 可以加快推理速度,又可以确保生成的 json 始终有效,有效的提高了 LLM (大语言模型)输出的可靠性和稳定性。

更多内容在公号:LLM 应用全栈开发

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/158492.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

时序数据库InfluxDB了解

参考:https://blog.csdn.net/u014265785/article/details/126951221

【C++】 局部对象,引用返回

1、new 关键字 会在堆内申请空间,如果仅仅是普通调用构造函数,不会在堆内开辟空间。 2、函数调用会形成栈帧,进行压栈操作,函数调用结束,会进行弹栈。 函数内的局部对象,会随着弹栈,而被销毁(…

Jetson Orin NX 开发指南(5): 安装 OpenCV 4.6.0 并配置 CUDA 以支持 GPU 加速

一、前言 Jetson 系列的开发板 CPU 性能不是很强,往往需要采用 GPU 加速的方式处理图像数据,因此本文主要介绍如何安装带有 GPU 加速的 OpenCV,其中 GPU 加速通过 CUDA 来实现。 参考博客 Ubuntu 20.04 配置 VINS-Fusion-gpu OpenCV 4.6.…

SpringBoot Redis 基础使用

目录 Redis能做什么: redis特点 redis优点 opsForValue opsForList opsForSet opsForZSet StringRedisTemplate与RedisTemplate区别点 redis是一个key-value。和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、li…

MS9708数模转换器可pin对pin兼容AD9708

MS9708/MS9710/MS9714 是一个 8-Bit/10-Bit/14-Bit 高速、低功耗 D/A 转换器。可pin对pin兼容AD9708。当采样速率达到 125MSPS 时,MS9708/MS9710/MS9714 也能提供优越的 AC 和 DC 性能。 MS9708/MS9710/MS9714 正常工作电压范围为2.7V ~ 5.5V,功耗低能很…

尿检设备“智能之眼”:维视智造推出MV-MC 系列医疗专用相机

​ 尿液分析是临床检验的基础常规项目,随着医疗设备的不断发展,尿液分析相关仪器的国产化和自动化程度也进一步提升。2022 年国内尿液分析市场的规模约为 28 亿元,激烈的竞争推动了尿检仪器自动化、智能化升级,在仪器中加入机器视…

软件工程与计算总结(十一)人机交互设计

目录 ​编辑 一.引例 二.目标 三.人类因素 1.精神模型 2.差异性 四.计算机因素 1.可视化设计 2.常见界面类型 五.人机交互设计的交互性 1.导航 2.反馈 3.设计原则 六.设计过程 1.基本过程 2.界面原型化 一.引例 无论软件功能多么出色,亦或内部的构造…

SpringBoot 过滤器filter当中的自定义异常捕获问题

需求描述:需要根据用户的请求路径拦截做权限控制: 但是这样做全局异常无法捕获 解决方案: 在filter当中引入HandlerExceptionResolver类,通过该类的resolveException方法抛出自定义异常: public class OpenInvokeFil…

计算机指令、机器码

目录 背景 在软硬件接口中,CPU 帮我们做了什么事? 从编译到汇编,代码怎么变成机器码? 解析指令和机器码 总结延伸 背景 上大学的时候,我们系里教 C 语言程序设计的老师说,他们当年学写程序的时候&…

实施运维03(在虚拟机上安装winServer2008系统)

新建虚拟机(一直下一步) 新建成功后选择镜像(右键设置,选择CD/DVD,选择使用IOS镜像文件,浏览选择2008镜像打开) 安装2008版本系统(一直下一步) 修改密码---设置密码 与电脑远程连…

接口测试文档

接口测试的总结文档 第一部分:主要从问题出发,引入接口测试的相关内容并与前端测试进行简单对比,总结两者之前的区别与联系。但该部分只交代了怎么做和如何做?并没有解释为什么要做? 第二部分:主要介绍为什…

windows系统安装openssl并且转换证书格式

概述 碎碎念,如果你有MAC电脑,就别折腾了,直接用MAC电脑吧,不用安装直接用openssl 本文主要讲到了openssl的基本使用方法,开发环境为windows,开发工具为VS2019.本文主要是说明openssl如何使用,不介绍任何理…

java: 无效的目标发行版: 11

第一步: 第二步: 第三步

UE4和C++ 开发--HUD类

HUD 平视显示器(Head Up Display),简称HUD。在蓝图中是指在屏幕上面绘制的二维物体。 1. 创建HUD 打开蓝图编辑器,创建一个蓝图类,搜索HUD,选择并命名BP_HUD。 2. 开始绘制 打开事件列表,右键搜索 EventReceive Draw HUD。有两…

@Mapper与@MapperScan注解

Mapper Mapper Mapper.xml文件 作用在dao(mapper)层上的一个注解,将接口生成一个动态代理类,有了这个注解就不用 再写Mapper.xml文件 如果缺少这个注解,运行项目就会报相应的错误 Field userMapper in com.example…

Kafka SASL认证授权(四)认证源码解析

Kafka SASL认证授权(四)认证源码解析。 官网地址:https://kafka.apache.org/ 一、认证流程 在了解kafka网络模型的基础上,了解它的认证流程: ApiVersionsRequest->SaslHandshakeRequest->a series of SASL client and server tokens corresponding to the mechani…

WebRTC 系列(四、多人通话,H5、Android、iOS)

WebRTC 系列(三、点对点通话,H5、Android、iOS) 上一篇博客中,我们已经实现了点对点通话,即一对一通话,这一次就接着实现多人通话。多人通话的实现方式呢也有好几种方案,这里我简单介绍两种方案…

JVM:虚拟机类加载机制

JVM:虚拟机类加载机制 什么是JVM的类加载 众所周知,Java是面向对象编程的一门语言,每一个对象都是一个类的实例。所谓类加载,就是JVM虚拟机把描述类的数据从class文件加载到内存,并对数据进行校验,转换解析和初始化&a…

【计算机组成体系结构】移码 | 定点小数的表示和运算

一、移码 上篇我们提到了原码,反码和补码的表示形式和如何转换。这篇我们会提到一个新的概念—移码。移码也很简单,其实就是在补码的基础上把符号取反即可。 值得注意的是,移码只能表示整数。而原码,反码和补码既可以表示整数又…

ASEMI整流桥KBL410需要散热片吗?

编辑-Z 在决定电子设备或半导体组件的配置时,了解每个部件的性能和需求至关重要。那么,对于KBL410这款整流桥,它是否需要散热片呢?在本文中,我们将详细解析KBL410的工作原理,以及是否需要散热片。 首先&am…