LLM总结(持续更新中)

最新的参见LLM-Summary

引言

  • 当前LLM模型火出天际,但是做事还是需要脚踏实地。
  • 此文只是日常学习LLM,顺手整理所得。
  • 本篇博文更多侧重对话、问答类LLM上,其他方向(代码生成)这里暂不涉及,可以去看综述来了解。

之前LLM模型梳理

  • 图来源: A Survey of Large Language Models | Github Repo
    img

BLOOM (BigScience)

  • BLOOM是一个自回归的大模型,可根据prompt来生成连续的文本。包括46种语言和13个编程语言。
  • 参数量为1760亿个参数。和GPT一样,使用的是decoder-only架构。
  • 训练所用数据集基本是手搓出来的。
  • 但是要想推理起来这个模型,起码需要8个A800 80G的显卡才能推理起来。小编前不久有幸推理了一下,模型将近就有328G,真是够大的。
  • 这个模型要想落地,可就需要很长一段时间了。

后BLOOM模型梳理

BLOOM
Firefly
BELLE

LLaMA (Meta)

  • 缺乏指令微调

后LLaMA模型梳理

LLaMA
Alpaca
FreedomGPT
Chinese-alpaca-lora
japanese-alpaca-lora
Wombat
Vicuna
Koala
ChatLLaMA
Chinese-ChatLLaMA
ColossalChat
Baize
gpt4all
HuaTuo

Alpaca (斯坦福)

  • 由Meta的LLaMA 7B微调而来,52k数据,性能约等于GPT-3.5
  • Self-Instruct: Aligning Language Model with Self Generated Instructions论文启发,使用现有强语言模型自动生成指令数据
  • 衍生项目:
    • Alpaca-LoRA: 开启了LLaMA模型上LoRA微调
    • Chinese-LLaMA-Alpaca
    • Chinese-alpaca-lora
    • japanese-alpaca-lora
    • Wombat
      • 提出无需强化学习的对齐方法训练语言模型

Vicuna (UC伯克利、卡内基梅隆大学、斯坦福大学和加州大学圣地亚哥分校)

  • 与GPT-4性能相匹配的LLaMA微调版本, 130亿参数
  • 通过在ShareGPT收集用户共享对话对LLaMA进行微调而来,在超过90%的情况下,实现了与Bard和ChatGPT相匹配的能力

image

  • 训练流程:
ShareGPT收集70k对话数据
优化Aplaca训练脚本,处理多轮对话和长序列问题
PyTorch FSDP 8个A100 一天训练
质量评估,80个问题,用GPT-4对模型输出进行评价

三者之间汇总对比

image

Koala (UC伯克利 AI Research Institute(BAIR))

  • 使用网络获取的高质量数据进行训练,可以有效地回答各种用户的查询,比Alpaca更受欢迎,至少在一半的情况下与ChatGPT的效果不相上下
  • 得出有效结论:正确的数据可以显著改善规模更小的开源模型
  • 研究人员专注于收集一个小型的高质量数据集,包括ChatGPT蒸馏数据、开源数据等

ChatLLaMA (Nebuly)

  • 一个可以使用自己的数据和尽可能少的计算量,来创建个性化的类似ChatGPT的对话助手
  • 库的目的是通过抽象计算优化和收集大量数据所需的工作,让开发人员高枕无忧
  • ChatLLaMA旨在帮助开发人员处理各种用例,所有用例都与RLHF训练和优化推理有关。以下是一些用例参考:
    • 为垂直特定任务(法律、医疗、游戏、学术研究等)创建类似ChatGPT的个性化助手;
    • 想在本地硬件基础设施上使用有限的数据,训练一个高效的类似ChatGPT的助手;
    • 想创建自己的个性化版本类ChatGPT助手,同时避免成本失控;
    • 想了解哪种模型架构(LLaMA、OPT、GPTJ等)最符合我在硬件、计算预算和性能方面的要求;
    • 想让助理与我的个人/公司价值观、文化、品牌和宣言保持一致。

Chinese-ChatLLaMA(ydli-ai)

  • 中文对话模型ChatLLaMA、中文基础模型LLaMA-zh。
    -ChatLLaMA 支持简繁体中文、英文、日文等多语言。
  • LLaMA 在预训练阶段主要使用英文,为了将其语言能力迁移到中文上,首先进行中文增量预训练,
  • 使用的语料包括中英平行语料、中文维基、社区互动、新闻数据、科学文献等。再通过 Alpaca 指令微调得到 Chinese-ChatLLaMA。
  • 项目特点
    • 通过 Full-tuning (全参数训练)获得中文模型权重,提供 TencentPretrain 与 HuggingFace 版本
    • 模型细节公开可复现,提供数据准备、模型训练和模型评估完整流程代码
    • 提供目前最大的中文 LLaMA 模型
    • 多种量化方案,支持 CUDA 和边缘设备部署推理

FreedomGPT (Age of AI)

  • 建立在Alpaca之上,回答问题没有偏见或偏袒,并且会毫不犹豫第回答有争议或争论性的话题
  • 克服了审查限制,在没有任何保障的情况下迎合有争议性的话题。标志是自由女神像,象征自由。

ColossalChat (UC伯克利)

  • 基于LLaMA模型,只需不到100亿个参数就能达到中英文双语能力,效果与ChatGPT和GPT3.5相当。
  • 复刻了完整的RLHF过程,是目前最接近ChatGPT原始技术路线的开源项目
  • 使用了InstrutionWild中英双语训练数据集,其中包含大约100,000个中英文问答对。
    • 该数据集是从社交媒体平台上的真实问题场景中收集和清理的,作为种子数据集,使用self-instruct进行扩展,标注成本约为900美元。
    • 与其他self-instruct方法生成的数据集相比,该数据集包含更真实和多样化的种子数据,涵盖更广泛的主题。该数据集适用于微调和RLHF训练。
    • 在提供优质数据的情况下,ColossalChat可以实现更好的对话交互,同时也支持中文。
  • 完整的RLHF管线,共有三个阶段:
    1. RLHF-Stage1: 使用上述双语数据集进行监督指令微调模型
    2. RLHF-Stage2: 通过对同一提示的不同输出手动排序来训练奖励模型,分配相应的分数,然后监督奖励模型的训练
    3. RLHF-Stage3: 使用强化学习算法,这是训练过程中最复杂的部分。

Baize (加州大学圣迭戈分校、中山大学和微软亚研)

  • 包括四种英文模型(白泽-7B、13B、30B)和一个垂直领域的白泽医疗模型,计划未来发布中文的白泽模型。

  • 值得注意的是,该方法的数据处理、训练模型、Demo等全部代码均已开源,真是良心,由衷点赞。

  • 作者提出一种自动收集ChatGPT对话的流水线,通过从特定数据集中采样[种子]的方式,让ChatGPT自我对话,批量生成高质量多轮对话数据集。如果使用特定领域数据集,比如医学问答数据集,就可以生成高质量垂直领域语料。

    image

gpt4all(Nomic AI)

  • 基于GPT-3.5-Turbo的800k条数据进行训练,包括文字问题、故事描述、多轮对话和代码。
  • 该方案提供了完整的技术报告,包括收集数据、整理数据、训练代码和模型权重。

Huatuo-Llama-Med-Chinese(哈工大)


ChatYuan-large-v2 (元语智能)

  • 这个模型的商业气息较浓一些。不过,这也是无奈之举。
  • ChatYuan-large-v2是一个支持中英双语的功能型对话语言大模型。ChatYuan-large-v2使用了和 v1版本相同的技术方案,在微调数据、人类反馈强化学习、思维链等方面进行了优化。
  • ChatYuan-large-v2是ChatYuan系列中以轻量化实现高质量效果的模型之一,用户可以在消费级显卡、 PC甚至手机上进行推理(INT4 最低只需 400M )。

Firefly(yangjianxin1)

  • Firefly(流萤) 是一个开源的中文对话式大语言模型,基于BLOOM模型,使用指令微调(Instruction Tuning)在中文数据集上进行调优。同时使用了词表裁剪、ZeRO、张量并行等技术,有效降低显存消耗和提高训练效率。 在训练中,使用了更小的模型参数量,以及更少的计算资源。构造了许多与中华文化相关的数据,以提升模型这方面的表现,如对联、作诗、文言文翻译、散文、金庸小说等。
  • 因为该项目首先采用LLMPrunner对原始BLOOM模型进行此表裁剪,所以效果有限,优势在于小,缺点也在这里。

BELLE (链家)

  • 本项目重点关注在开源预训练大语言模型的基础上,如何得到一个尽可能效果好的具有指令表现能力的语言模型,降低大家研究此方面工作的门槛,重点在于中文大语言模型。

  • 针对中文做了优化,模型调优仅使用了由ChatGPT生产的数据(不包含任何其他数据)

  • 调优BLOOMZ-7B1-mt模型,开放了四个不同大小规模的指令学习数据集训练模型

    Datasize200,000600,0001,000,0002,000,000
    Finetuned ModelBELLE-7B-0.2MBELLE-7B-0.6MBELLE-7B-1MBELLE-7B-2M
  • 基于Meta LLaMA实现调优的模型:BELLE-LLaMA-7B-0.6M-enc
    , BELLE-LLaMA-7B-2M-enc
    , BELLE-LLaMA-7B-2M-gptq-enc
    , BELLE-LLaMA-13B-2M-enc。请参考Meta LLaMA的License
  • 值得说明的是,该项目开源了一批由ChatGPT生成的中文数据集,具体如下:
    • 1.5M中文数据集:包含不同指令类型、不同领域的子集。
    • 10M中文数据集,包括25w条中文数学题数据、80w条用户与助手对话数据、40w条给定角色的多轮对话数据、200w条多样化指令任务数据。
  • ⚠️ 数据集开源协议均为GPL3.0,使用请注意。

ChatGLM-6B (清华)

GLM-130B(清华)

后ChatGLM梳理

ChatGLM
langchain-ChatGLM
ChatGLM-Med

langchain-ChatGLM (imClumsyPanda)

  • 该项目是基于本地知识的ChatGLM应用实现。基于本地文档类知识来增强ChatGLM的回答。这应该是最能落地的项目了。

  • 整体流程如下图:

    image

Med-ChatGLM(哈工大)

Dolly 2.0 (databricks)

IDPChat (白海)

  • 中文多模态模型,基于预训练大模型LLaMA和开源文生图预训练模型Stable Diffusion为基础,快速构建而来。
  • 开发者可以根据场景需求,便捷地对其进行微调优化。

参考资料

  • 开发者笑疯了! LLaMa惊天泄露引爆ChatGPT平替狂潮,开源LLM领域变天
  • 训练ChatGPT的必备资源:语料、模型和代码库完全指南
  • 用ChatGPT训练羊驼:「白泽」开源,轻松构建专属模型,可在线试玩
  • 笔记本就能运行的ChatGPT平替来了,附完整版技术报告
  • 世界首款真开源类ChatGPT大模型Dolly 2.0,可随意修改商用
  • 中文多模态模型问世!IDPChat生成图像文字,只需5步+单GPU

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/16169.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

清华发布首个最全大模型安全评测系统,ChatGPT登榜首!

夕小瑶科技说 原创作者 | 天于刀刀 Python当前大型语言模型的火爆程度我们不用再进行赘述了,伴随着百度文心一言打响国内商业大模型第一枪,华为盘古,阿里通义千问,智谱ChatGLM,科大讯飞星火等国内公司纷纷开始布局。 另一方面由于…

360+ChatGLM联手研发中国版“微软+OpenAI”

文章目录 人工智能福利文章前言360与智谱AI强强联合什么是智谱AI360智脑360GLM与360GPT大模型战略布局写在最后 ✍创作者:全栈弄潮儿 🏡 个人主页: 全栈弄潮儿的个人主页 🏙️ 个人社区,欢迎你的加入:全栈弄…

45岁当打之年再创业,剑指中国版ChatGPT,这位美团联合创始人能否圆梦?

文 BFT机器人 “即便只有一个人,我也要出发。” 这是45岁的前美团联合创始人王慧文再次冲上创业沙场的“征战”宣言,这一次他的梦想是“组队拥抱新时代,打造中国OpenAI”。 01 当打之年, AI新梦再起航 “我的人工智能宣言&…

一支不足百人的团队创造了 ChatGPT :90 后挑大梁,应届生 11 人,华人抢眼

让全网沸腾的 ChatGPT,其背后团队不足百人。ChatGPT 发布以来,在短短 2 个月时间月活破亿,成为历史上用户增长最快的消费应用。有分析机构感叹:“在互联网领域发展 20 年来,我们想不出有哪个消费者互联网应用比它上升速…

ChatGLM2-6B本地部署

ChatGLM2-6B本地部署 ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性: 更强大的性能:基于 ChatGLM 初代模型的开…

ChatGLM-6B 本地部署指南!

Datawhale干货 作者:宋志学,Datawhale成员 注意事项-写在最前 显卡需要至少6GB的显存使用GPU部署模型需要自行安装torch和与自己显卡匹配的CUDA、cudnn 下载ChatGLM-6B 在GitHub上下载chatglm-6b的源码,地址如下 https://github.com/THUDM/C…

如何在本地部署运行ChatGLM-6B

在本篇技术博客中,将展示如何在本地获取运行代码和模型,并配置环境以及 Web GUI,最后通过 Gradio 的网页版 Demo 进行聊天。 官方介绍 ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM)…

统计行业板块内涨停板数量,跟踪热点板块!股票量化分析工具QTYX-V2.6.0

前言‍‍ QTYX系统结构如下所示: 功能概述 目前A股市场的股票每天是有限制最大涨幅的,也就是涨停的概念。比如主板个股最大涨幅是10%,创业板个股最大涨幅是20%等。 对于个股而言并不是随随便便就能被推到涨停板的,它的背后是主力资…

股票数据分析

股票数据分析 前面我们介绍了Spark 和 Spark SQL,今天我们就使用 Spark SQL来分析一下我们的数据,今天我们主要分析一下股票数据 数据准备 这里郑重申明,我们的全部数据来自tushare, tushare 是一个免费提供各类金融数据 , 助力智能投资与…

华为版 ChatGPT“盘古 Chat”2023年7月7日正式发布

据某些媒体称,华为公司将发布一款直接对标 ChatGPT 的多模态千亿级大模型产品,名为“盘古 Chat”。 据介绍,盘古大模型于 2020 年 11 月在华为云内部立项成功。这款“盘古 Chat ”预计将于今年 7 月 7 日举行的华为云开发者大会 (HDC.Cloud …

苹果上演“无间道”?故意泄露假消息“钓鱼”,成功抓获 iOS 17 内部爆料者...

整理 | 郑丽媛 出品 | CSDN(ID:CSDNnews) 在今年 3 月底,苹果预告了 WWDC23 大会的时间:北京时间 6 月 6 日至 10 日。据外媒预测,iOS 17、新款 MacBook Air 和 M3 芯片都有可能在本次大会中亮相。 然而对于…

被 Google 裁掉的 Golden 12K:开源开发者成重灾区,61 岁再求职!

整理 | 屠敏 出品 | CSDN(ID:CSDNnews) 2022 被视为全球经济的低谷期,如今 2023 新一年的到来,被众人赋予了很高的期望。 然而,新年伊始,全球科技巨头之一的 Google 最新宣布大规模裁员的消息&a…

简单聊聊工程质量中研发需要关心的点

一、背景 作为程序猿,工程质量是我们逃不开的一个话题,工程质量高带来的好处多多,我在写这篇文章的时候问了一下CHATGPT,就当娱乐一下,以下是ChatGPT的回答: 1、提高产品或服务的可靠性和稳定性。高质量的系…

ChatGPT不会很快接管人类工作,AI也不会免费打工

ChatGPT 等大模型的相继发布,让很多人倍感压力,害怕 AI 会很快接管他们的工作。对此,OpenAI 也曾发表过一项研究,表明 ChatGPT 的影响涵盖所有收入阶层,且高收入工作可能面临更大的风险。事实到底如何呢? …

AI辅助编程实践-Copilot

引言 在ChatGPT的浪潮下,当前大模型普遍引入了编程问题平台以及大量代码数据来训练逻辑和问答能力,同时大模型本身具备的自然语言理解和处理能力,使得我们可以与大模型进行代码编程上的交流与咨询,大大减少我们在一些琐碎事务上的…

chatgpt赋能python:Python动态调用方法:优雅的编程解决方案

Python动态调用方法:优雅的编程解决方案 Python语言的特性之一是其动态性。这意味着Python在运行时不仅能够创建新的对象和修改现有对象的属性,还可以动态地调用方法。这种能力在编写大规模的Python应用程序时格外有用。本文将深入探讨Python动态调用方…

聚观早报 | ChatGPT登顶美区iOS免费榜;库克不满苹果首款MR设备

今日要闻:ChatGPT登顶美区iOS免费榜;库克不满苹果首款MR设备;索尼正开发小尺寸折叠屏手机;万达辟谣大规模裁员;智能仿生手让截肢者重获手心的温度 ChatGPT登顶美区iOS免费榜 ChatGPT 在 iOS 美区免费 App 排行榜上位列…

【送书福利】终于有本书讲清了ChatGPT和AIGC

文末送书活动 AIGC的各大门派是谁?典型技术都有什么? AIGC为什么在绘画领域先破圈?ChatGPT的有哪些局限性? 为何科技企业争相推出大模型? 人类的创新能力会被AIGC取代吗…… 诸如此类的这些话题呈现爆发性增长&#xf…

【社区图书馆】人工智能新高度:生成式AI带来新的革命!

引言 很高兴能够参加CSDN & 机械工业出版社联合举办的深读计划活动,非常荣幸被选中获得纸质版的《你好,ChatGPT》这本书,在这里再次感谢CSDN、机械工业出版社给我的这个阅读机会,我个人也是非常珍惜这次深读计划,经…

终于有本书把ChatGPT和AIGC讲清了!

AIGC的各大门派是谁?典型技术都有什么? AIGC为什么在绘画领域先破圈?ChatGPT的有哪些局限性? 为何科技企业争相推出大模型? 人类的创新能力会被AIGC取代吗…… 诸如此类的这些话题呈现爆发性增长,频频被科技…