STM32系统架构介绍

STM32系统架构

  • 1. CM3/4系统架构
  • 2. CM3/4系统架构-----存储器组织结构
    • 2.1 寄存器地址映射(特殊的存储器)
    • 2.2 寄存器地址计算
    • 2.3 寄存器的封装
  • 3. CM3/4系统架构-----时钟系统

STM32 和 ARM 以及 ARM7是什么关系?

  • ARM 是一个做芯片标准的公司,它负责的是芯片内核的架构设计;
  • ARM7STM32ST等芯片公司生产的某一种类型的芯片。
  • ST 是一个不做标准的芯片公司,根据 ARM 公司提供的芯片内核标准设计自己的芯片。所以,任何一个做 Cortex-M3 芯片,他们的内核结构都是一样的,不同的是他们的存储器容量,片上外设,IO 以及其他模块的区别。不同公司设计的 Cortex-M3 芯片他们的端口数量,串口数量,控制方法这些都是有区别的,这些资源他们可以根据自己的需求理念来设计。

1. CM3/4系统架构

在这里插入图片描述

注意:CM3和CM4系统架构有差异,上面为CM3系统架构,下列为CM4系统架构。
在这里插入图片描述
主系统由 32 位多层 AHB 总线矩阵构成,可实现以下部分的互连:

八条主控总线七条被控总线
内核I总线(不适用于CM3)内部 Flash ICode 总线
内核D总线内部 Flash DCode 总线
内核S总线主要内部 SRAM1 (112 KB)
DMA1存储器总线辅助内部 SRAM2 (16 KB)
DMA2 存储器总线描述辅助内部 SRAM3 (64 KB)
DMA2 外设总线(不适用于CM3)AHB1 外设(包括 AHB-APB 总线桥和 APB 外设)
以太网 DMA 总线AHB2 外设(不适用于CM3)
USB OTG HS DMA 总线(不适用于CM3)FSMC(不适用于CM3)

  借助总线矩阵,可以实现主控总线到被控总线的访问,这样即使在多个高速外设同时运行期间,系统也可以实现并发访问和高效运行。64 KB CCM(内核耦合存储器)数据 RAM 不属于总线矩阵,只能通过 CPU 对其进行访问。

总线接口描述
S0:
I 总线
此总线用于将CM3/4内核的指令总线连接到总线矩阵。内核通过此总线获取指令。 此总线访问的对象是包含代码的存储器(内部 Flash/SRAM 或通过 FSMC 的外部存储器)
S1:
D 总线
此总线用于将CM3/4数据总线和 64 KB CCM 数据 RAM 连接到总线矩阵。内核通过此总线进行立即数加载和调试访问。此总线访问的对象是包含代码或数据的存储器(内部Flash 或通过 FSMC 的外部存储器)。
S2:
S 总线
此总线用于将CM3/4内核的系统总线连接到总线矩阵。此总线用于访问位于外设 或 SRAM 中的数据。也可通过此总线获取指令(效率低于 ICode)。此总线访问的对象是 112 KB、64 KB 和 16 KB 的内部 SRAM、包括 APB 外设在内的 AHB1 外设、AHB2 外设以及通过 FSMC 的外部存储器。
S3/4:
DMA 存储器总线
此总线用于将 DMA 存储器总线主接口连接到总线矩阵。DMA 通过此总线来执行存储器数据的传入和传出。此总线访问的对象是数据存储器:内部 SRAM(112 KB、64 KB、16 KB)以及通过 FSMC 的外部存储器。
S5:
DMA 外设总线
此总线用于将 DMA 外设主总线接口连接到总线矩阵。DMA 通过此总线访问 AHB 外设或执行存储器间的数据传输。此总线访问的对象是 AHB 和 APB 外设以及数据存储器:内部 SRAM 以及通过 FSMC 的外部存储器。
S6:
以太网 DMA 总线
此总线用于将以太网 DMA 主接口连接到总线矩阵。以太网 DMA 通过此总线向存储器存取数据。此总线访问的对象是数据存储器:内部 SRAM(112 KB、64 KB 和 16 KB)以及通过 FSMC 的外部存储器。
S7:
USB OTG HS DMA 总线
此总线用于将 USB OTG HS DMA 主接口连接到总线矩阵。USB OTG DMA 通过此总线向存储器加载/存储数据。此总线访问的对象是数据存储器:内部 SRAM(112 KB、64 KB 和 16 KB)以及通过 FSMC 的外部存储器。
总线矩阵总线矩阵用于主控总线之间的访问仲裁管理。仲裁采用循环调度算法。
AHB/APB 总线桥 (APB)借助两个 AHB/APB 总线桥 APB1 和 APB2,可在 AHB 总线与两个 APB 总线之间实现完全同步的连接,从而灵活选择外设频率。


在这里插入图片描述

  STM32 芯片是已经封装好的成品,主要由内核和片上外设组成。若与电脑类比,内核与外设就如同电脑上的 CPU 与主板、内存、显卡、硬盘的关系。STM32F103 采用的是 Cortex-M3 内核,内核即 CPU,由 ARM 公司设计。ARM 公司并不生产芯片,而是出售其芯片技术授权。芯片生产厂商 (SOC) 如 ST、TI、Freescale,负责在内核之外设计部件并生产整个芯片,这些内核之外的部件被称为核外外设或片上外设。如 GPIO、USART(串口)、I2C、SPI 等都叫做片上外设。
  Cortex-M处理器基于一种加载-存储架构,数据需要从存储器中加载和处理后,使用多个单独的指令写回存储器。例如:要增加SRAM中存储的数据值,处理器需要使用一条指令从SRAM中读出数据,并且将数据放到处理器的寄存器中,然后使用第二条指令增加寄存器中的数据值,最后使用第三条指令将数据值写回寄存器。


  内核即CPU内部的各种译码和执行电路。指令对中断控制器(NVIC)、系统计时器(SysTick)、三阶流水线(取指、解码、执行)、浮点单元(FPU)和指令跟踪接口(ITM)等的操作,其实都是对其寄存器的操作,它们都是由内部寄存器构成的。对这些寄存器的了解参考( cortex-m3与cortex-m4中的寄存器)。

内核的主要组成部分:

  1. 内核Core‌:处理器最核心的部分,负责几乎所有的运算和控制程序运行过程,包括中断响应服务。内核由多个部分构成,包括中断控制器(NVIC)系统计时器(SysTick)、三阶流水线(取指、解码、执行)、浮点单元(FPU)指令跟踪接口(ITM)‌
  2. 调试系统‌:主要用于固件的调试和监视系统的运行状态。它支持JTAG或2针串行线调试(SWD),支持多处理器和实时跟踪‌。
  3. 寄存器组‌:‌
    通用寄存器组‌:包括堆栈指针、连接寄存器、程序计数器等‌。
    程序状态寄存器(xPSR):用于存储程序的状态信息。‌
    中断屏蔽寄存器组‌:用于控制中断的屏蔽。
    控制寄存器(CONTROL):用于控制处理器的各种功能。
  4. 存储器保护单元MPU:是内核中的一个模块,用于控制和管理存储器的访问权限。它并不是ARM内核的一部分,而是处理器内部的一个独立模块‌。
  5. 内存管理单元MMU:将虚地址转换成物理地址。


指令的执行过程与寄存器的关系:

  1. 指令获取与执行‌:ARM处理器在执行指令时,首先从内存中获取指令,并将其存储在寄存器中。处理器通过寄存器读取指令并执行相应的操作。例如,当处理器执行一条ARM指令时,程序计数器(PC)的值会增加4个字节;而执行一条Thumb指令时,PC的值会增加2个字节‌
  2. ‌寄存器的作用‌:ARM处理器有37个寄存器,包括31个通用寄存器和6个状态寄存器。通用寄存器用于存储数据和地址,而状态寄存器用于标识CPU的工作状态和程序的运行状态。寄存器在指令执行过程中起着关键作用,它们存储指令、数据和地址,帮助处理器高效地执行任务‌
  3. 工作模式与寄存器‌:ARM处理器支持7种运行模式,包括用户模式、快速中断模式、外部中断模式、管理模式、数据访问终止模式、系统模式和未定义指令中止模式。不同的运行模式下,寄存器的使用权限和功能有所不同。例如,用户模式下,程序不能直接访问所有系统资源,而特权模式下则可以‌。
  4. ‌异常处理与寄存器‌:在异常发生时,处理器会切换到相应的异常处理模式,并保存当前的执行状态。异常处理过程中,寄存器的使用也非常重要。例如,当发生异常时,系统会将下一条指令存入链接寄存器(LR),并将当前程序状态字(CPSR)保存到备份程序状态字(SPSR),然后跳转到异常处理函数。处理完成后,系统会恢复之前的执行状态‌。

  
详细的介绍参考下列文档:

  • 《Cortex-M3权威指南(中文)》
  • 《CM3技术参考手册》
  • 《STM32中文参考手册_V10》
  • 《Cortex M3与M4权威指南》
  • 《STM32F3与F4系列Cortex M4内核编程手册》
  • 《STM32F4xx参考手册_V4(中文版)》

2. CM3/4系统架构-----存储器组织结构

程序存储器、数据存储器、寄存器和 I/O 端口排列在同一个顺序的 4 GB 地址空间内。
 STM32是一个32位单片机,可以很方便的访问4GB以内的存储空间(2^32 = 4GB),Cortex M3/M4内核将STM32芯片架构中的所有结构,包括:FLASHSRAM外设相关寄存器等全部组织在同一个4GB的线性地址空间内,我们可以通过C语言来访问这些地址空间,从而操作相关外设(读/写)。数据字节以小端格式(小端模式)存放在存储器中,数据的高字节保存在内存的高地址中,而数据的低字节保存在内存的低地址中。
存储器本身是没有地址信息的,我们对存储器分配地址的过程就叫存储器映射。这个分配一般由芯片厂商做好了,芯片厂商将所有的存储器及外设资源都映射在一个4GB的地址空间上(8个块),从而可以通过访问对应的地址,访问具体的外设。存储器空间包括程序代码、数据、外设以及处理器内部的调试支持部件。
 4GB空间分成8个块,每个块512MB,其中有很多保留区域,这是因为一般的芯片制造厂家是不可能把4GB空间用完的,同时,为了方便后续型号升级,会将一些空间预留。
存储器组织结构如图所示:
在这里插入图片描述


【详情见 <CM3/CM4存储器映射>】

  MPU为监控总线传输的可编程设备,需要通过软件(一般是嵌入式OS)配置。若MPU存在,应用程序可以将存储器空间分为多个部分,并为每个部分定义访问权限。当违反访问规则时,错误异常就会产生,错误异常处理则会分析问题,而且如果可能,将错误加以修复。一般情况下,OS会设置MPU以保护OS内核和其他特权任务使用的数据,防止恶意用户程序的破坏。而且OS也可以选择将不同用户任务使用的存储器隔离开来。这些处理有助于检测系统错误,并且提高了系统在处理错误情况时的健壮性。MPU也可以将系统配置为只读,防止意外擦除SRAM中的数据或覆盖指令代码。MPU默认禁止,若应用不需要存储器保护特性,就无须将其初始化。
  NVIC处理异常,可以处理多个中断请求IRQ和一个不可屏蔽中断NMI请求,IRQ一般由片上外设或外部中断输入通过I/O端口产生,NMI可用于看门狗定时器或掉电检测。处理器内部有SysTick定时器,它可以产生周期性的定时中断请求,可用于嵌入式OS计时或没有OS的应用中的简单定时控制。


注意:对CM3/4的操作其实就是对存储器映射中的寄存器的操作,通过对寄存器的操作来操作内存或其他外设等。

2.1 寄存器地址映射(特殊的存储器)

  给存储器分配地址的过程叫存储器映射,寄存器是一类特殊的存储器,它的每个位都有特定的功能,可以实现对外设/功能的控制,给寄存器的地址命名的过程就叫寄存器映射。
  举个简单的例子,大家家里面的纸张就好比通用存储器,用来记录数据是没问题的,但是不会有具体的动作,只能做记录,而你家里面的电灯开关,就好比寄存器了,假设你家有8个灯,就有8个开关(相当于一个8位寄存器),这些开关也可以记录状态,同时还能让电灯点亮/关闭,是会产生具体动作的。为了方便区分和使用,我们会给每个开关命名,比如厨房开关、大厅开关、卧室开关等,给开关命名的过程,就是寄存器映射。
  我们以GPIO的ODR寄存器为例,其参考手册的描述如图所示:
在这里插入图片描述
寄存器名字:每个寄存器都有一个对应的名字,以简单表达其作用,并方便记忆,这里GPIOx_ODR表示寄存器英文名,x可以从A~G,说明有7个这样的寄存器)。
寄存器偏移量及复位值:地址偏移量表示相对该外设基地址的偏移,GPIOB 的外设基地址是:0x4002 0400。那么GPIOB_ODR寄存器的地址就是:0x4002 0414。复位值表示该寄存器在系统复位后的默认值,可以用于分析外设的默认状态。
寄存器位表:描述寄存器每一个位的作用(共32bit),这里表示ODR寄存器的第15位(bit),位名字为 ODR15,rw表示该寄存器可读写(r,可读取;w,可写入)。
位功能描述:描述寄存器每个位的功能,这里表示位015,对应ODR0ODR15,每个位控制一个IO口的输出状态。


由 < 3.2 库开发和寄存器的关系 > 学习可知:

#define GPIOB_ODR *(unsigned int *)(0x40020414)
GPIOB_ODR = 0XFFFF;

stm32f407xx.h 里面使用结构体方式对 STM32F407 的寄存器做了详细映射。


注意:CM3/4的内部寄存器和外设寄存器的映射和操作封装文件位于标准外设库/HAL库中,详情见< 3.5 库开发和寄存器的关系>

2.2 寄存器地址计算

某个寄存器地址,由三个参数决定:

  1. 总线基地址(BUS_BASE_ADDR)
  2. 外设基于总线基地址的偏移量(PERIPH_OFFSET)
  3. 寄存器相对外设基地址的偏移量(REG_OFFSET)

寄存器地址 = BUS_BASE_ADDR + PERIPH_OFFSET + REG_OFFSET


总线基地址(BUS_BASE_ADDR)
在这里插入图片描述
外设基于总线基地址的偏移量(PERIPH_OFFSET)
在这里插入图片描述
在这里插入图片描述
寄存器相对外设基地址的偏移量(REG_OFFSET)
在这里插入图片描述

2.3 寄存器的封装

【详情见 < 3.6 C语言对寄存器的封装>】

3. CM3/4系统架构-----时钟系统

【详情见 <CM3/CM4时钟系统>】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/16143.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Leetcode - 149双周赛

目录 一、3438. 找到字符串中合法的相邻数字二、3439. 重新安排会议得到最多空余时间 I三、3440. 重新安排会议得到最多空余时间 II四、3441. 变成好标题的最少代价 一、3438. 找到字符串中合法的相邻数字 题目链接 本题有两个条件&#xff1a; 相邻数字互不相同两个数字的的…

2025.2.10 每日学习记录3:技术报告只差相关工作+补实验

0.近期主任务线 1.完成小论文准备 目标是3月份完成实验点1的全部实验和论文。 2.准备教资笔试 打算留个十多天左右&#xff0c;一次性备考笔试的三个科目 1.实习申请技术准备&#xff1a;微调、Agent、RAG 据央视财经&#xff0c;数据显示&#xff0c;截至2024年12月…

【苍穹外卖】修改前端代码解决修改Nginx端口后websocket连接失败的问题

解决方案——修改前端js代码 步骤一 找到文件app.d0aa4eb3.js&#xff08;…\nginx-1.20.2\html\sky\js\app.d0aa4eb3.js&#xff09;&#xff0c;将n"ws://localhost/ws/"改成下面的内容。 // 改成n"ws://localhost&#xff1a;800/ws/"仍然不行——页面…

本地基于GGUF部署的DeepSeek实现轻量级调优之二:检索增强生成(RAG)

前文&#xff0c;我们在本地windows电脑基于GGUF文件&#xff0c;部署了DeepSeek R1 1.5B模型&#xff0c;如果想在离线模式下加载本地的DeepSeek模型自行对进行训练时&#xff0c;是不能直接使用GGUF文件进行训练的&#xff0c;但是可以对模型进行微调&#xff0c;以下说的是第…

开发完的小程序如何分包

好几次了&#xff0c;终于想起来写个笔记记一下 我最开始并不会给小程序分包&#xff0c;然后我就各种搜&#xff0c;发现讲的基本上都是开发之前的小程序分包&#xff0c;可是我都开发完要发布了&#xff0c;提示我说主包太大需要分包&#xff0c;所以我就不会了。。。 好了…

Java进阶篇之多线程

引言 &#x1f680; 在前面的文章中&#xff0c;我们介绍了NIO&#xff08;Java进阶篇之NIO基础&#xff09;。你是不是曾经在面对需要处理大量任务的应用时&#xff0c;感觉单线程根本不够用&#xff1f;&#x1f613; 如果你想让你的应用运行得更快、更高效&#xff0c;多线…

Visual Studio 使用 “Ctrl + /”键设置注释和取消注释

问题&#xff1a;在默认的Visual Studio中&#xff0c;选择单行代码后&#xff0c;按下Ctrl /键会将代码注释掉&#xff0c;但再次按下Ctrl /键时&#xff0c;会进行双重注释&#xff0c;这不是我们想要的。 实现效果&#xff1a;当按下Ctrl /键会将代码注释掉&#xff0c;…

DeepSeek投喂数据(训练AI)

1、拉取nomic-embed-text 打开命令行&#xff0c;运行&#xff1a;ollama pull nomic-embed-text 这里需要先安装ollama &#xff0c;不过大家应该在本地部署模型时已经安装了 拉取成功就行了&#xff0c;后续在配置AnythingLLM时用到 2、下载 AnythingLLM 地址&#xff1a…

【原创精品】基于Springboot3+Vue3的学习计划管理系统

大家好&#xff0c;我是武哥&#xff0c;最近给大家手撸了一个基于SpringBoot3Vue3的学习计划管理系统&#xff0c;可用于毕业设计、课程设计、练手学习&#xff0c;系统全部原创&#xff0c;如有遇到网上抄袭站长的&#xff0c;欢迎联系博主~ 项目演示视频 https://www.bili…

逆势而上,门店规模拓展的智慧攻略-中小企实战运营和营销工作室博客

逆势而上&#xff0c;门店规模拓展的智慧攻略-中小企实战运营和营销工作室博客 在竞争激烈、风云变幻的商业市场中&#xff0c;多数品牌在困境中艰难求生&#xff0c;而部分佼佼者却能突破重重阻碍&#xff0c;实现门店规模的逆势扩张。这些成功案例背后&#xff0c;究竟隐藏着…

基于改进型灰狼优化算法(GWO)的无人机路径规划

内容&#xff1a; 基于改进型灰狼优化算法的无人机轨迹规划 GWO是一种群体智能优化算法&#xff0c;模仿灰狼的社会等级和狩猎行为。原始的GWO有一些局限性&#xff0c;比如容易陷入局部最优&#xff0c;收敛速度慢等&#xff0c;所以改进型的GWO可能通过不同的策略来优化这些…

网络安全与AI:数字经济发展双引擎

在2025年年初&#xff0c;一场科技攻防战引发了全球关注。国产人工智能DeepSeek的爆火&#xff0c;伴随着大规模的网络攻击事件&#xff0c;将网络安全的重要性推上了风口浪尖。 在此背景下&#xff0c;我们计划探讨网络安全与人工智能如何为数字经济发展提供强大动力。网络安…

2.11学习记录

web——CTFHub XSS学习 学习资料&#xff1a;xss&#xff08;跨站攻击&#xff09; 原理 1.黑客发送带有xss恶意脚本的链接给用户 2.用户点击了恶意链接&#xff0c;访问了目标服务器&#xff08;正常的服务器&#xff09; 3.目标服务器&#xff08;正常的服务器&#xff09…

个人毕业设计--基于HarmonyOS的旅行助手APP的设计与实现(挖坑)

在行业混了短短几年&#xff0c;却总感觉越混越迷茫&#xff0c;趁着还有心情学习&#xff0c;把当初API9 的毕业设计项目改成API13的项目。先占个坑&#xff0c;把当初毕业设计的文案搬过来 摘要&#xff1a;HarmonyOS&#xff08;鸿蒙系统&#xff09;是华为公司推出的面向全…

零成本搭建私人图床教程:CloudFlare R2 + PicGo 完整方案

零成本搭建私人图床教程&#xff1a;CloudFlare R2 PicGo 完整方案 &#x1f680; 前言 图片托管服务在现代内容创作中扮演着重要角色。无论是技术博客、文档编写&#xff0c;还是在线教程制作&#xff0c;都离不开可靠的图片存储和分发系统。本教程将详细介绍如何利用 Clou…

Word2vec Skip-Gram 模型

图例 Skip-gram 模型&#xff0c;假设句子中的每个词都决定了相邻词的选取&#xff0c;所以你可以看到Skip-gram模型的输入是 W t W_{t} Wt​&#xff0c; 预测的输出是 W t W_t Wt​ 周边的词 也是说Skip-gram的目标是&#xff1a;给定一个中心词 W t W_t Wt​, 预测其上下…

【R语言】相关系数

一、cor()函数 cor()函数是R语言中用于计算相关系数的函数&#xff0c;相关系数用于衡量两个变量之间的线性关系强度和方向。 常见的相关系数有皮尔逊相关系数&#xff08;Pearson correlation coefficient&#xff09;、斯皮尔曼秩相关系数&#xff08;Spearmans rank corre…

网络工程师 (32)TRUNK

一、定义 TRUNK&#xff0c;也称为端口汇聚、链路汇聚或多链路汇聚&#xff0c;是一种网络技术&#xff0c;其本质是将多个以太网端口绑定在一起作为一个逻辑链路来使用。通过TRUNK技术&#xff0c;用户在使用这个逻辑链路时&#xff0c;就好像是在使用一条独立的物理链路一样&…

“可通过HTTP获取远端WWW服务信息”漏洞修复

环境说明&#xff1a;①操作系统&#xff1a;windows server&#xff1b;②nginx&#xff1a;1.27.1。 1.漏洞说明 “可通过HTTP获取远端WWW服务信息”。 修复前&#xff0c;在“响应标头”能看到Server信息&#xff0c;如下图所示&#xff1a; 修复后&#xff0c;“响应标头…

编译和链接【三】

文章目录 编译和链接【三】前言系列文章入口编译过程词法分析语法分析语义分析生成中间代码汇编链接 编译和链接【三】 前言 在我大一的时候&#xff0c; 我使用VC6.0对C语言程序进行编译链接和运行 &#xff0c; 然后我接触了VS&#xff0c; Qt creator等众多IDE&#xff0c…