了解 AI :了解 AI 方面的一些术语 (中英文对照)

本心、输入输出、结果

文章目录

  • 了解 AI :了解 AI 方面的一些术语 (中英文对照)
    • 前言
      • AI 方面的一些术语 (中英文对照)
      • AI 方面的一些术语 (中英文对照) - 文字版
      • 弘扬爱国精神

了解 AI :了解 AI 方面的一些术语 (中英文对照)


编辑:简简单单 Online zuozuo
地址:https://blog.csdn.net/qq_15071263

在这里插入图片描述

前言

了解 AI :了解 AI 方面的一些术语 (中英文对照)

了解 AI :了解 AI 方面的一些术语 (中英文对照)

在这里插入图片描述

AI 方面的一些术语 (中英文对照)

在这里插入图片描述

在这里插入图片描述

AI 方面的一些术语 (中英文对照) - 文字版

1 Accelerator 加速器 一种微处理器,设计用于加速AI应用。
2 Agents 代理 可以独立并主动地执行某些任务,无需人类干预的软件,常常使用一套工具,如计算器或网络浏览。
3 AGI (Artificial General Intelligence) 通用人工智能 虽然并无广泛共识,但微软研究员已经将AGI定义为在任何智力任务上都与人类一样有能力的人工智能。
4 Alignment 对齐 确保AI系统的目标与人类价值观一致的任务。
5 ASI (Artificial Super Intelligence) 超级人工智能 尽管存在争议,但ASI通常被定义为超越人类思维能力的人工智能。
6 Attention 注意力(Transformer模型重要组成) 在神经网络的上下文中,注意力机制帮助模型在生成输出时专注于输入的相关部分。
7 Back Propagation 反向传播 这是一种在训练神经网络中常用的算法,指的是计算损失函数相对于网络权重的梯度的方法。
8 Bias 偏差 AI模型对数据所做的假设。"偏差-方差权衡"是模型对数据的假设与模型的预测随着训练数据的变化而变化的平衡。归纳偏差是机器学习算法对数据底层分布的一组假设。
9 Chain of Thought 思维链 大模型提示工程中的重要技术,这个词通常用来描述AI模型在达到决策时使用的推理步骤序列。
10 Chatbot 聊天机器人 一种计算机程序,设计用于通过文本或语音交互模拟人类对话。聊天机器人经常利用自然语言处理技术来理解用户输入并提供相关的响应。
11 ChatGPT 不需多解释 由OpenAI开发的基于GPT微调的AI大语言模型应用,可以生成模仿人类的文本,可以完成写文章,写软件程序代码等等多种任务。
12 CLIP (Contrastive Language–Image Pretraining) 对比语言-图像预训练 OpenAI开发的一种AI模型,它将图像和文本相连接,使其能够理解和生成图像的描述。
13 Compute 算力 用于训练或运行AI模型的计算资源(如CPU或GPU时间)。
14 Convolutional Neural Network (CNN) 卷积神经网络 一种深度学习模型,通过应用一系列滤波器来处理具有网格状拓扑结构(例如,图像)的数据。这类模型常用于图像识别任务。
15 Data Augmentation 数据增强 通过添加已有数据的略微修改的副本来增加用于训练模型的数据量和多样性的过程。
16 Deep Learning 深度学习 机器学习的一个子领域,专注于训练具有多层的神经网络,使其能够学习复杂的模式。
17 Diffusion 扩散 在AI和机器学习中,扩散是一种生成新数据的技术,它从一块真实数据开始并添加随机噪声。扩散模型是一种生成模型,其中神经网络被训练以预测当随机噪声添加到数据时的反向过程。扩散模型被用来生成与训练数据相似的新样本。
18 Double Descent 双下降 机器学习中的一个现象,模型性能随着复杂性的增加而提高,然后变差,然后再次提高。
19 Embedding 嵌入 数据的新形式的表示,通常是一个向量空间。相似的数据点有更相似的嵌入。
20 Emergence/Emergent Behavior (“sharp left turns,” intelligence explosions) 涌现/涌现行为(“急转左”,智慧爆炸) 在AI中,涌现指的是从简单的规则或交互中产生的复杂行为。“急转左”和“智能爆炸”是AI发展突然和剧烈转变的推测性场景,通常与AGI的到来有关。
21 End-to-End Learning 端到端学习 一种不需要手工设计特征的机器学习模型。模型只需输入原始数据并从这些输入中学习。
22 Expert Systems 专家系统 应用人工智能技术提供特定领域内复杂问题解决方案的应用。
23 Explainable AI (XAI) 可解释的AI AI的一个子领域,专注于创建提供清晰易懂决策解释的透明模型。
24 Fine-tuning 微调 取一个已经在大数据集上训练过的预训练机器学习模型,并将其调整以适应略有不同的任务或特定领域的过程。在微调过程中,使用较小的、针对特定任务的数据集进一步调整模型的参数,使其能够学习任务特定的模式并提高在新任务上的性能。
25 Forward Propagation 前向传播 在神经网络中,前向传播是将输入数据送入网络,并通过每一层(从输入层到隐藏层,最后到输出层)产生输出的过程。网络将权重和偏差应用于输入,并使用激活函数生成最终输出。
26 Foundation Model 基础模型 在广泛数据上训练的大型AI模型,用于适应特定任务。
27 General Adversarial Network (GAN) 生成对抗网络 一种用于生成与现有数据相似的新数据的机器学习模型。它使两个神经网络相互对抗:“生成器”创建新数据,“判别器”试图区分该数据与真实数据。
28 Generative AI 生成式AI AI的一个分支,专注于创建可以基于现有数据的模式和示例生成新的和原创内容的模型,如图像、音乐或文本。比如ChatGPT,MidJouney。
29 GPT (Generative Pretrained Transformer) 生成式预训练Transformer模型 由OpenAI开发的AI大语言模型,可以生成类似人类的文本。
30 GPU (Graphics Processing Unit) 图形处理器 一种专用的微处理器,主要设计用于快速渲染图像以输出到显示器。GPU也非常适合执行训练和运行神经网络所需的计算。
31 Gradient Descent 梯度下降 在机器学习中,梯度下降是一种优化方法,它根据损失函数的最大改善方向逐步调整模型的参数。例如,在线性回归中,梯度下降通过反复调整线的斜率和截距以最小化预测误差,帮助找到最佳拟合线。
32 Hallucinate/Hallucination 幻觉 在AI的上下文中,幻觉是指模型生成不基于实际数据或与现实显著不同的内容的现象。
33 Hidden Layer 隐藏层 神经网络中的隐藏层指的是不直接连接到输入或输出的人工神经元层。
34 Hyperparameter Tuning 超参数调优 选择机器学习模型的超参数(不从数据中学习的参数)的适当值的过程。
35 Inference 推理 使用训练过的机器学习模型进行预测的过程。
36 Instruction Tuning 指令微调 机器学习中的一种技术,其中模型基于数据集中给定的特定指令进行微调。
37 Large Language Model (LLM) 大型语言模型 一种可以生成类人文本并在广泛数据集上训练的AI模型。
38 Latent Space 潜空间(潜特征空间或嵌入空间) 在机器学习中,这个术语指的是模型(如神经网络)创建的数据的压缩表示。相似的数据点在潜在空间中更接近。
39 Loss Function (or Cost Function) 损失函数 机器学习模型在训练期间寻求最小化的函数。它量化模型预测与真实值之间的差距。
40 Machine Learning 机器学习 机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。提供系统自动学习和从经验中改进的能力,无需明确编程。
41 Mixture of Experts 多专家模型/混合专家系统 是在神经网络 (Neural Network, NN) 领域发展起来的一种集成学习(Ensemble Learning) 技术。传统的深度学习模型在训练时,对于每个输入样本,整个网络都会参与计算。随着模型越来越大,训练使用的样本数据越来越多,训练的开销越来越难以承受。而 MoE 可以动态激活部分神经网络,从而实现在不增加计算量的前提下大幅度增加模型参数量。MoE 技术目前是训练万亿参数量级模型的关键技术。
42 Multimodal 多模态 模态(modal)是事情经历和发生的方式,我们生活在一个由多种模态(Multimodal)信息构成的世界,包括视觉信息、听觉信息、文本信息、嗅觉信息等等,在人工智能领域多模态经常指的是多种模态的信息,包括:文本、图像、视频、音频等。
43 Natural Language Processing (NLP) 自然语言处理 AI的一个子领域,专注于通过自然语言进行计算机和人类之间的交互。NLP的最终目标是阅读、解码、理解,并以有价值的方式理解人类语言。
44 NeRF (Neural Radiance Fields) 神经辐射场 一种计算机视觉技术,用于生成高质量的三维重建模型。使用神经网络从2D图像创建3D场景的方法。它可用于照片级渲染、视图合成等。它利用深度学习技术从多个视角的图像中提取出对象的几何形状和纹理信息,然后使用这些信息生成一个连续的三维辐射场,从而可以在任意角度和距离下呈现出高度逼真的三维模型。
45 Neural Network 神经网络 一种受人脑启发的AI模型。它由连接的单元或节点组成,这些节点被称为神经元,它们在各层之间进行组织。神经元接受输入,在其上进行一些计算,并产生输出。
46 Objective Function 目标函数 机器学习模型在训练期间寻求最大化或最小化的函数。
47 Overfitting 过拟合 当函数过于紧密地拟合有限的数据点时会发生的建模错误,导致应用于未见数据时预测性能差。
48 Parameters 参数 在机器学习中,参数是模型用来进行预测的内部变量。它们在训练过程中从训练数据中学习。例如,在神经网络中,权重和偏差就是参数。
49 Pre-training 预训练 训练机器学习模型的初始阶段,在该阶段模型从数据中学习通用特征、模式和表示,而不需要具体了解将来会应用到的任务。这个无监督或半监督的学习过程使模型能够发展出对底层数据分布的基本理解,并提取出有意义的特征,这些特征可以在后续的微调中用于特定任务。
50 Prompt 提示词 为模型设置任务或查询的初始上下文或指令。
51 Regularization 正则化 在机器学习中,正则化是一种用于防止过拟合的技术,通过向模型的损失函数添加惩罚项来实现。这种惩罚阻止模型过度依赖训练数据中的复杂模式,从而促进更具泛化性和较少倾向于过拟合的模型。
52 Reinforcement Learning 强化学习 一种机器学习类型,其中一个代理通过在环境中采取行动以最大化某些奖励来学习决策。
53 RLHF 基于人类反馈的强化学习 一种通过从人类对模型输出给出的反馈中学习来训练AI模型的方法。
54 Singularity 奇点 在AI的语境中,奇点(也称为技术奇点)指的是一个假设的未来时间点,当时技术增长变得无法控制和不可逆转,导致对人类文明的无法预见的变化。
55 Supervised Learning 监督学习 监督学习是机器学习的一个分支,是一种数据分析方法,它使用从数据中迭代学习的算法,使计算机无需明确编程就能够发现隐藏的洞见。
56 Symbolic Artificial Intelligence 符号人工智能 一种利用符号推理来解决问题和表示知识的AI类型。
57 TensorFlow 由Google开发的开源机器学习平台,用于构建和训练机器学习模型。
58 TPU 张量处理单元 张量处理单元 (TPU) 是 Google 定制开发的专用集成电路 (ASIC),用于加速机器学习工作负载。
59 Training Data 训练数据 用于训练机器学习模型的数据集。
60 Transfer Learning 迁移学习 机器学习中的一种方法,其中预先训练的模型被用于新的问题。
61 Transformer 用于处理自然语言等向量数据的特定类型的神经网络架构。Transformer以其处理数据中长距离依赖性的能力而闻名,这要归功于一种称为“注意力”的机制,它允许模型在产生输出时权衡不同输入的重要性。
62 Underfitting 欠拟合 当统计模型或机器学习算法无法充分捕捉数据的底层结构时,统计和机器学习中的建模错误。
63 Unsupervised Learning 无监督学习 一种机器学习类型,其中模型没有提供带标签的训练数据,而必须自己识别数据中的模式。
64 Validation Data 验证数据 用于机器学习的数据集的一个子集,它与训练和测试数据集是分开的。它被用来调整模型的超参数(即,结构,而不是权重)。
65 XAI 可解释AI 专注于创建提供明确且易于理解的决策解释的透明模型的AI子领域。
66 Zero-shot Learning 零样本学习 一种机器学习技术,其中模型在未经微调的情况下,对训练期间未见过的条件进行预测。
67 Prompt Engineering 提示工程 提示工程(Prompt Engineering)是一门较新的学科,关注提示词开发和优化,帮助用户将大语言模型(Large Language Model, LLM)用于各场景和研究领域。掌握了提示工程相关技能将有助于用户更好地了解大型语言模型的能力和局限性。用户可利用提示工程来提升大语言模型处理复杂任务场景的能力,如问答和算术推理能力。开发人员可通过提示工程设计、研发强大的工程技术,实现和大语言模型或其他生态工具的高效接轨。
68 Few shot Prompting 少样本学习 在NLP大模型中,基于上下文学习、少样本学习或少样本提示是一种提示工程技术,它允许模型在尝试任务之前处理一些示例。

弘扬爱国精神

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/163729.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PowerShell系列(十二):PowerShell Cmdlet高级参数介绍(二)

目录 1、ErrorVariable 错误变量 2、OutVariable 结果输出 3、OutBuffer 输出Buffer定义 4、PipelineVariable管道参数 今天给大家讲解PowerShell Cmdlet高级参数第二部分相关的知识,希望对大家学习PowerShell能有所帮助! 1、ErrorVariable 错误变量…

浏览器缓存

浏览器的缓存是性能优化中最高效的方法看,他可以显著减少网络传输带来的损耗。 浏览器缓存可以帮助以下两种情况下进行优化: 发起请求:使用缓存不发起的请求浏览器响应:后端与前端数据是一致的,那么没有必要再将数据传…

网络安全内网渗透之信息收集--systeminfo查看电脑有无加域

systeminfo输出的内容很多,包括主机名、OS名称、OS版本、域信息、打的补丁程序等。 其中,查看电脑有无加域可以快速搜索: systeminfo|findstr "域:" 输出结果为WORKGROUP,可见该机器没有加域: systeminfo…

Docker 安装zookeeper

一、安装单机版 1、拉取镜像 docker pull zookeeper2、创建挂载目录 mkdir -p /mydata/zookeeper/{conf,data,logs}3、新建配置文件 cd /mydata/zookeeper/conf vi zoo.cfgdataDir/data dataLogDir/logs tickTime2000 initLimit10 syncLimit5 clientPort21814、单机主机启…

elasticsearch常用命令

Elasticsearch概念 ElasticsearchmysqlIndex(索引)数据库Type(类型)表Documents(文档)行Fields列 常用命令 索引 # 索引初始化,number_of_shards:分片数,不可修改;number_of_replicas:副本数,可修改 PUT lagou {"settings…

基于深度学习的目标检测模型综述

基于深度学习的目标检测模型综述 一 概论目标检测主要挑战评估指标 二 展望 一 概论 目标检测是目标分类的自然延伸,目标分类仅旨在识别图像中的目标。目标检测的目标是检测预定义类的所有实例并通过轴对齐的框提供其在图像中的初略定位。检测器应能够识别所有目标…

jmeter监听每秒点击数(Hits per Second)

jmeter监听每秒点击数(Hits per Second) 下载插件添加监听器执行压测,监听结果 下载插件 点击选项,点击Plugins Manager (has upgrades),点击Available Plugins,搜索5 Additional Graphs安装。 添加监听…

什么是热阻?

电流流过导体时,在导体两端会产生电压差,这个电压差除以流过导体的电流就是这个导体的电阻,单位是欧姆。这就是欧姆定律,大家都知道的东西。 当热源的热量在物体中传递时,在物体上也会产生温度差,这个温度差…

通过SVN拉取项目 步骤

方法一:文件夹方式 首先新建一个空的文件夹,例如,名为“demo”的空文件夹 在这个空的文件夹中鼠标右键,点击SVN Checkout 会出现下图所示的页面,第一个输入框是svn的项目地址,第二个输入框是拉取项目所放的…

安防监控系统EasyCVR视频汇聚平台设备树收藏按钮的细节优化

视频监控TSINGSEE青犀视频平台EasyCVR能在复杂的网络环境中,将分散的各类视频资源进行统一汇聚、整合、集中管理,在视频监控播放上,TSINGSEE青犀视频安防监控汇聚平台可支持1、4、9、16个画面窗口播放,可同时播放多路视频流&#…

Java学习

目录 一、变量 二、运算 三、判断和循环语句 四、数组 五、方法 六、类 七、字符串 八、static 九、继承 十、多态 十一、包 十二、final 十三、抽象类 十四、接口 十五、嵌套类 一、变量 1、byte范围【-128,127】 2、long变量后面要写l,float变量…

单链表算法经典OJ题

目录 1、移除链表元素 2、翻转链表 3、合并两个有序链表 4、获取链表的中间结点 5、环形链表解决约瑟夫问题 6、分割链表 1、移除链表元素 203. 移除链表元素 - 力扣(LeetCode) typedef struct ListNode LSNode; struct ListNode* remove…

C#冒泡排序算法

冒泡排序实现原理 冒泡排序是一种简单的排序算法,其原理如下: 从待排序的数组的第一个元素开始,依次比较相邻的两个元素。 如果前面的元素大于后面的元素(升序排序),则交换这两个元素的位置,使…

2023前端面试题总结

给大家推荐一个实用面试题库 1、前端面试题库 (面试必备) 推荐:★★★★★ 地址:web前端面试题库 Html5和CSS3 常见的水平垂直居中实现方案 最简单的方案当然是flex布局 .father {display: flex;justify-content…

Unity Animation--动画剪辑(动画游戏对象)

保存新的动画剪辑后,就可以开始添加关键帧了。 可以使用两种不同的方法为GameObject设置动画。 Unity“动画”窗口:“记录模式”和“预览模式”。 记录模式下的动画窗口 在记录模式下,当您移动,旋转或以其他方式修改动画GameOb…

nginx tomcat 动静分离

动静分离: 访问静态和动态页面分开 实现动态和静态页面负载均衡。 五台虚拟机 实验1,动静分离 思路: 需要设备:三台虚拟机 一台nginx 代理又是静态 两台tomcat 请求动态页面 在全局模块中配置upstream tomcat 新建location…

全面的Docker快速入门教程

前言: 都2023年了,你还在为了安装一个开发或者部署环境、软件而花费半天的时间吗?你还在解决开发环境能够正常访问,而发布正式环境无法正常访问的问题吗?你还在为持续集成和持续交付(CI / CD)工…

Linux安装MINIO

MINIO简介MINIO目录 mkdir -p /opt/minio/data && cd /opt/minio MINIO下载 wget https://dl.minio.org.cn/server/minio/release/linux-amd64/minio MINIO授权 chmod x minio MINIO端口 firewall-cmd --zonepublic --add-port7171/tcp --permanent && firewal…

ios safari 正则兼容问题

背景: 系统是自己开发的采购管理系统; 最近升级系统之后客户反馈部分苹果手机现在在进入单据界面的时候报错, 内容显示不全; 安卓手机正常; 苹果首页是之前有使用过系统的才不行, 如果是之前没有使用过系统, 现在也是可以; 也尝试清理过缓存,更换浏览器都也是不行; 也更…

分类预测 | MATLAB实现WOA-LSTM鲸鱼算法优化长短期记忆网络数据分类预测

分类预测 | MATLAB实现WOA-LSTM鲸鱼算法优化长短期记忆网络数据分类预测 目录 分类预测 | MATLAB实现WOA-LSTM鲸鱼算法优化长短期记忆网络数据分类预测分类效果基本描述模型描述程序设计参考资料 分类效果 基本描述 1.MATLAB实现WOA-LSTM鲸鱼算法优化长短期记忆网络数据分类预测…