瑞芯微RKNN开发·yolov5

官方预训练模型转换

  1. 下载yolov5-v6.0分支源码解压到本地,并配置基础运行环境。
  2. 下载官方预训练模型
  • yolov5n.pt
  • yolov5s.pt
  • yolov5m.pt
  1. 进入yolov5-6.0目录下,新建文件夹weights,并将步骤2中下载的权重文件放进去。
  2. 修改models/yolo.py文件
    def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i]).sigmoid()  # conv#     bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)#     x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()#     if not self.training:  # inference#         if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:#             self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)#         y = x[i].sigmoid()#         if self.inplace:#             y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy#             y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh#         else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953#             xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy#             wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh#             y = torch.cat((xy, wh, y[..., 4:]), -1)#         z.append(y.view(bs, -1, self.no))# return x if self.training else (torch.cat(z, 1), x)return x[0], x[1], x[2]
  1. 新建export_rknn.py文件
import os
import torch
import onnx
from onnxsim import simplify
import onnxoptimizer
import argparse
from models.yolo import Detect, Modelif __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--weights', type=str, default='./weights/yolov5n.pt', help='initial weights path') #================================================================opt = parser.parse_args()print(opt)#Save Only weightsckpt = torch.load(opt.weights, map_location=torch.device('cpu'))torch.save(ckpt['model'].state_dict(), opt.weights.replace(".pt", "-model.pt"))#Load model without postprocessingnew_model = Model("./models/{}.yaml".format(os.path.basename(opt.weights).strip(".pt")))new_model.load_state_dict(torch.load(opt.weights.replace(".pt", "-model.pt"), map_location=torch.device('cpu')), False)new_model.eval()#save to JIT scriptexample = torch.rand(1, 3, 640, 640)traced_script_module = torch.jit.trace(new_model, example)traced_script_module.save(opt.weights.replace(".pt", "-jit.pt"))#save to onnxf = opt.weights.replace(".pt", ".onnx")torch.onnx.export(new_model, example, f, verbose=False, opset_version=12,training=torch.onnx.TrainingMode.EVAL,do_constant_folding=True,input_names=['data'],output_names=['out0','out1','out2'])#onnxsimmodel_simp, check = simplify(f)assert check, "Simplified ONNX model could not be validated"onnx.save(model_simp, opt.weights.replace(".pt", "-sim.onnx"))#optimize onnxpasses = ["extract_constant_to_initializer", "eliminate_unused_initializer"]optimized_model = onnxoptimizer.optimize(model_simp, passes)onnx.checker.check_model(optimized_model)onnx.save(optimized_model, opt.weights.replace(".pt", "-op.onnx"))print('finished exporting onnx')
  1. 命令行执行python3 export_rknn.py脚本(默认为yolov5n.pt, 加–weights参数可指定权重),转换成功会输出一下信息, 转换后的模型存于权重同级目录(*-op.onnx后缀模型)
Namespace(weights='./weights/yolov5n.pt')
finished exporting onnx

请添加图片描述

RKNN开发板植入-模型转换篇

前期准备
  • RKNN开发环境(python)
  • rknn-toolkits2
详细流程
  1. 进入rknn-toolkits2/examples/onnx/yolov5示例目录下
  2. 修改test.py内容(按需修改ONNX_MODEL、RKNN_MODEL、IMG_PATH、DATASET等等超参数)
def sigmoid(x):# return 1 / (1 + np.exp(-x))return x
  1. 命令行执行python3 test.py即可获取推理结果
    请添加图片描述

请添加图片描述

RKNN开发板植入-NPU加载推理篇(C++)

后续放出代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/164756.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

汽车安全的未来:毫米波雷达在碰撞避免系统中的角色

随着科技的飞速发展,汽车安全系统变得愈加智能化,而毫米波雷达技术正是这一领域的亮点之一。本文将深入探讨毫米波雷达在汽车碰撞避免系统中的关键角色,以及其对未来汽车安全的影响。 随着城市交通的拥堵和驾驶环境的变化,汽车安全…

Cannot use object of type __PHP_Incomplete_Class as array

场景:将项目复制 出来一份后,修改控制器,打开后就报错 解决:将runtime 清除后就正常了

jenkins 原理篇——pipeline流水线 声明式语法详解

大家好,我是蓝胖子,相信大家平时项目中或多或少都有用到jenkins,它的piepeline模式能够对项目的发布流程进行编排,优化部署效率,减少错误的发生,如何去写一个pipeline脚本呢,今天我们就来简单看…

手写一个PrattParser基本运算解析器3: 基于Swift的PrattParser的项目概述

点击查看 基于Swift的PrattParser项目 PrattParser项目概述 前段时间一直想着手恶补 编译原理 的相关知识, 一开始打算直接读大学的 编译原理, 虽然内容丰富, 但是着实抽象难懂. 无意间看到B站的熊爷关于普拉特解析器相关内容, 感觉是一个非常好的切入点.所以就写了基于Swift版…

软考系列(系统架构师)- 2018年系统架构师软考案例分析考点

试题一 软件架构(非功能性需求、C/S 架构) 【问题1】(8分) 在系统架构设计中,决定系统架构设计的非功能性需求主要有四类:操作性需求、性能需求、安全性需求和文化需求。请简要说明四类需求的含义。 (1) …

推荐《中华小当家》

《中华小当家!》 [1] 是日本漫画家小川悦司创作的漫画。该作品于1995年至1999年在日本周刊少年Magazine上连载。作品亦改编为同名电视动画,并于1997年发行播出。 时隔20年推出续作《中华小当家!极》,于2017年11月17日开始连载。…

力扣每日一题48:旋转图像

题目描述: 给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。 你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。 示例 1: 输入:matrix [[1,2,3],…

H3C交换机 万兆光模块可以插在千兆光口上使用吗?

环境: S6520X-24ST-SI交换机 H3C LSWM1QSTK2万兆40G堆叠线QSFP 问题描述: H3C交换机 万兆光模块可以插在千兆光口上使用吗? 答案: H3C交换机的万兆光模块(10 Gigabit Ethernet Module)通常使用的是SFP…

YOLO目标检测——红白细胞血小板数据集【含对应voc、coco和yolo三种格式标签】

实际项目应用:红白细胞血小板计数和分类数据集说明:YOLO目标检测数据集,真实场景的高质量图片数据,数据场景丰富。使用lableimg标注软件标注,标注框质量高,含voc(xml)、coco(json)和yolo(txt)三种格式标签&…

【试题032】C语言关系运算符例题

1.题目:设int a2,b4,c5;,则表达式ab!c>b>a的值为? 2.代码分析: //设int a2,b4,c5;,则表达式ab!c>b>a的值为?int a 2, b 4, c 5;printf("%d\n", (a b ! c > b > a));//分析&#xff…

攻防世界web篇-disabled_button

一个不能按的按钮,试过点击,确实是点不了,所以只能查看源代码喽 经过仔细查看,发现这里多了disabled,这个参数在linux中是禁止的意思,大概是这个意思吧,毕竟开机不自启就用这个参数 在控制台这…

专题:链表常考题目汇总

文章目录 反转类型:206.反转链表完整版二刷记录 25. K个一组反转链表1 :子链表左闭右闭反转版本2 : 子链表左闭右开反转版本(推荐)⭐反转链表左闭右闭和左闭右开 合并类型:21.合并两个有序链表1: 递归法2: …

【多线程】线程安全问题和解决方案

我们来看下面这一段代码 public class demo {public static void main(String[] args) throws InterruptedException {Cou count new Cou();Thread t1 new Thread(() -> {for (int i 0; i < 10000; i) {count.add();}});Thread t2 new Thread(() -> {for (int i …

【微信小程序】6天精准入门(第4天:自定义组件及案例界面)附源码

一、自定义组件 1、介绍 从小程序基础库版本 1.6.3 开始&#xff0c;小程序支持简洁的组件化编程。所有自定义组件相关特性都需要基础库版本 1.6.3 或更高。 开发者可以将页面内的功能模块抽象成自定义组件&#xff0c;以便在不同的页面中重复使用&#xff1b;也可以将复杂的页…

Linux 下安装配置部署MySql8.0

一 . 准备工作 MySQL安装包&#xff1a;在官网下载需要的版本&#xff0c;这里我用的版本是 MySQL 8.0.34 https://dev.mysql.com/downloads/mysql/ 本次linux机器使用的是阿里云ECS实例 二 . 开始部署 1. 将安装包上传至服务器 解压到当前文件夹 tar -zxvf mysql-8.0.34…

解决方法:从客户端(---<A href=“http://l...“)中检测到有潜在危险的 Request.Form 值。

从客户端(-----<A href"http://l...")中检测到有潜在危险的 Request.Form 值。 解决方法&#xff1a;应该是不同的.net Framework版本对代码的校验不同&#xff0c;造成在高版本操作系统&#xff08;即高.net Framework版本校验&#xff09;不兼容&#xff0c;可…

4 OpenCV实现多目三维重建(多张图片增量式生成稀疏点云)【附源码】

本文是基于 OpenCV4.80 进行的&#xff0c;关于环境的配置可能之后会单独说&#xff0c;先提一嘴 vcpkg 真好用 1 大致流程 从多张图片逐步生成稀疏点云&#xff0c;这个过程通常包括以下步骤&#xff1a; 初始重建&#xff1a; 初始两张图片的选择十分重要&#xff0c;这是整…

linux 安装操作 redis

1、redis概述和安装 1.1、安装redis 1. 下载redis 地址 https://download.redis.io/releases/ 2. 将 redis 安装包拷贝到 /opt/ 目录 3. 解压 tar -zvxf redis-6.2.1.tar.gz4. 安装gcc yum install gcc5. 进入目录 cd redis-6.2.16. 编译 make7. 执行 make install 进…

【Python生活脚本】视频转Gif动图

忘记过去&#xff0c;超越自己 ❤️ 博客主页 单片机菜鸟哥&#xff0c;一个野生非专业硬件IOT爱好者 ❤️❤️ 本篇创建记录 2023-10-20 ❤️❤️ 本篇更新记录 2023-10-20 ❤️&#x1f389; 欢迎关注 &#x1f50e;点赞 &#x1f44d;收藏 ⭐️留言&#x1f4dd;&#x1f64…

RHEL 8.6 Kubespray 1.23.0 install kubernetes v1.27.5

文章目录 1. 预备条件2. download01 节点 安装 dockerdownload01 节点 介质下载下载 bastion01节点配置 yum 源bastion01 节点安装 docker5. 安装 docker insecure registrybastion01 部署 nginx 与 镜像入库13.1 配置 config.sh13.2 配置 setup-docker.sh13.3 配置 start-ngin…