基于FPGA的图像自适应阈值二值化算法实现,包括tb测试文件和MATLAB辅助验证

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1Otsu方法

4.2 Adaptive Thresholding方法

4.3、FPGA实现过程

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

Vivado2019.2

matlab2022a

3.部分核心程序

`timescale 1ns / 1ps
//
// Company: 
// Engineer: 
// 
// Create Date: 2022/07/28 01:51:45
// Design Name: 
// Module Name: test_image
// Project Name: 
// Target Devices: 
// Tool Versions: 
// Description: 
// 
// Dependencies: 
// 
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
// 
//module test_image;reg i_clk;
reg i_rst;
reg [7:0] image_buff [0:100000];
reg [7:0] II0;
wire [7:0] o_Ifilter;wire [7:0] o_Ifilter2;
integer fids,jj=0,dat;//D:\FPGA_Proj\FPGAtest\codepzinitial 
beginfids = $fopen("D:\\FPGA_Proj\\FPGAtest\\codepz\\data.bmp","rb");dat  = $fread(image_buff,fids);$fclose(fids);
endinitial 
begin
i_clk=1;
i_rst=1;
#2000;
i_rst=0;
end always #10  i_clk=~i_clk;always@(posedge i_clk) 
beginII0<=image_buff[jj];jj<=jj+1;
endtops tops_u(
.i_clk              (i_clk),
.i_rst              (i_rst),
.i_I0               (II0),
.o_Ifilter          (o_Ifilter) ,
.o_Ifilter2         (o_Ifilter2)
);integer fout1;
initial beginfout1 = $fopen("o_Ifilter.txt","w");
endalways @ (posedge i_clk)beginif(jj<=66614)$fwrite(fout1,"%d\n",o_Ifilter);else$fwrite(fout1,"%d\n",0);
end
integer fout2;
initial beginfout2 = $fopen("o_Ifilter2.txt","w");
endalways @ (posedge i_clk)beginif(jj<=66614)$fwrite(fout2,"%d\n",o_Ifilter2);else$fwrite(fout2,"%d\n",0);
end
endmodule
0X_017m

4.算法理论概述

       图像二值化是数字图像处理中的一种常见技术,可以将灰度图像转换为黑白二值图像,突出图像的轮廓和特征。自适应阈值二值化是一种常用的图像二值化方法,能够根据图像局部区域的灰度分布自适应地确定阈值,从而实现更好的二值化效果。

      自适应阈值二值化算法的基本原理是将图像分为若干个小的子区域,每个子区域内的像素点使用一个共同的阈值进行二值化处理。这个阈值是根据子区域内像素点的灰度分布自适应计算得到的。常用的自适应阈值二值化方法包括Otsu方法和Adaptive Thresholding方法。

4.1Otsu方法

       Otsu方法是一种基于灰度直方图的阈值选择方法,通过优化类间方差来自动确定阈值。设图像的灰度级范围为0~255,灰度直方图表示每个灰度级的像素点数量。Otsu方法的目标是最优地选择一个阈值T,将图像分为前景和背景两部分,使得这两部分的类间方差最大。类间方差公式如下:

σb = w0 * w1 * (μ0 - μ1)²

      其中,w0和w1分别是前景和背景的像素点数量所占比例,μ0和μ1分别是前景和背景的灰度平均值。Otsu方法通过求解类间方差的最大值来自动确定最优阈值T。

4.2 Adaptive Thresholding方法

        Adaptive Thresholding方法是一种基于局部灰度分布的阈值确定方法。该方法将图像分成若干个小的子区域,每个子区域使用一个共同的阈值进行二值化处理。阈值是根据子区域内像素点的灰度分布计算得到的。具体来说,对于每个子区域,计算其灰度平均值和标准差,将灰度平均值减去一个常数(一般为1/2),得到该子区域的阈值。如果子区域内某个像素点的灰度值大于阈值,则将其置为255(白色),否则置为0(黑色)。

4.3、FPGA实现过程

       我们这个课题主要通过4.2的方法来实现基于FPGA的图像自适应阈值二值化算法,其实现过程如下:

  1. 划分子区域:将图像划分为若干个小的子区域,每个子区域的大小可以自定义。可以使用一个二维数组来表示子区域,数组的每个元素表示一个像素点的位置和灰度值。
  2. 计算阈值:对于每个子区域,计算其灰度平均值,并根据公式计算出该子区域的阈值。可以使用Verilog中的相关模块来实现计算过程。
  3. 二值化处理:对于每个像素点,如果其灰度值大于阈值,则将其置为255(白色),否则置为0(黑色)。可以使用一个简单的if-else语句来实现这个过程。
  4. 输出二值化图像:将处理后的二值化图像数据输出到FPGA的I/O口,以供后续显示或传输使用。
  5. 时钟信号:在整个实现过程中,需要使用一个时钟信号来同步数据传输和处理过程。可以使用FPGA的时钟源来生成相应的时钟信号。

        通过将FPGA的高速并行处理能力与自适应阈值二值化算法相结合,可以实现高性能、高效率的图像处理系统。这种实现方法可以广泛应用于数字图像处理、计算机视觉、安防监控等领域。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/165101.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

线性代数-Python-02:矩阵的基本运算 - 手写Matrix及numpy中的用法

文章目录 一、代码仓库二、矩阵的基本运算2.1 矩阵的加法2.2 矩阵的数量乘法2.3 矩阵和向量的乘法2.4 矩阵和矩阵的乘法2.5 矩阵的转置 三、手写Matrix代码Matrix.pymain_matrix.pymain_numpy_matrix.py 一、代码仓库 https://github.com/Chufeng-Jiang/Python-Linear-Algebra-…

计算机网络学习笔记(四):网络层(待更新)

目录 4.1 IP地址、子网划分、合并超网 4.1.1 IP地址、子网掩码、网关 4.1.2 IP地址的编址方法1&#xff1a;IP地址分类&#xff08;A~E类地址、保留的IP地址&#xff09; 4.1.4 IP地址的编址方法2&#xff1a;子网划分&#xff08;等长、变长&#xff09; 4.1.5 IP地址的编…

基于Python实现的一款轻量、强大、好用的视频处理软件,可缩视频、转码视频、倒放视频、合并片段、根据字幕裁切片段、自动配字幕等

Quick Cut 是一款轻量、强大、好用的视频处理软件。它是一个轻量的工具&#xff0c;而不是像 Davinci Resolve、Adobe Premiere 那样专业的、复杂的庞然大物。Quick Cut 可以满足普通人一般的视频处理需求&#xff1a;压缩视频、转码视频、倒放视频、合并片段、根据字幕裁切片段…

【LeetCode每日一题合集】2023.10.9-2023.10.15(贪心⭐位运算的应用:只出现一次的数字)

文章目录 2578. 最小和分割&#xff08;贪心&#xff09;2731. 移动机器人&#xff08;脑筋急转弯排序统计&#xff09;2512. 奖励最顶尖的 K 名学生&#xff08;哈希表排序&#xff09;&#xff08;练习Java语法&#xff09;代码风格1代码风格2 2562. 找出数组的串联值&#x…

【七:docken+jenkens部署】

一&#xff1a;腾讯云轻量服务器docker部署Jenkins https://blog.csdn.net/qq_35402057/article/details/123589493 步骤1&#xff1a;查询jenkins版本&#xff1a;docker search jenkins步骤2&#xff1a;拉取jenkins镜像 docker pull jenkins/jenkins:lts步骤3&#xff1a;…

网络安全中的人工智能:优点、缺点、机遇和危险

2022 年秋天&#xff0c;人工智能在商业领域爆发&#xff0c;引起了轰动&#xff0c;不久之后&#xff0c;似乎每个人都发现了 ChatGPT 和 DALL-E 等生成式 AI 系统的新的创新用途。世界各地的企业开始呼吁将其集成到他们的产品中&#xff0c;并寻找使用它来提高组织效率的方法…

MySQL --- 聚合查询 和 联合查询

聚合查询&#xff1a; 下文中的所有聚合查询的示例操作都是基于此表&#xff1a; 聚合函数 聚合函数都是行与行之间的运算。 count() select count(列名) from 表名; 统计该表中该列的行数&#xff0c;但是 null 值不会统计在内&#xff0c;但是如果写为 count(*) 那么 nu…

Redis性能滑坡:哈希表碰撞的不速之客【redis第二部分】

Redis性能滑坡&#xff1a;哈希表碰撞的不速之客 前言第一部分&#xff1a;Redis哈希表简介第二部分&#xff1a;哈希表冲突原因第三部分&#xff1a;Redis哈希函数第四部分&#xff1a;哈希表冲突的性能影响第五部分&#xff1a;解决冲突策略第六部分&#xff1a;redis是如何解…

偶数科技发布实时湖仓数据平台Skylab 5.3版本

近日&#xff0c; 偶数发布了最新的实时湖仓数据平台 Skylab 5.3 版本。Skylab包含七大产品&#xff0c;分别为云原生分布式数据库 OushuDB、数据分析与应用平台 Kepler、数据资产管理平台 Orbit、自动化机器学习平台 LittleBoy、数据工厂 Wasp、数据开发与调度平台 Flow、系统…

深入探讨 Golang 中的追加操作

通过实际示例探索 Golang 中的追加操作 简介 在 Golang 编程领域&#xff0c;append 操作是一种多才多艺的工具&#xff0c;使开发人员能够动态扩展切片、数组、文件和字符串。在这篇正式的博客文章中&#xff0c;我们将踏上一段旅程&#xff0c;深入探讨在 Golang 中进行追加…

Linux入门攻坚——4、shell编程初步、grep及正则表达式

bash的基础特性&#xff08;续&#xff09;&#xff1a; 1、提供了编程环境&#xff1a; 编程风格&#xff1a;过程式&#xff1a;以指令为中心&#xff0c;数据服务于执行&#xff1b;对象式&#xff1a;以数据为中心&#xff0c;指令服务于数据 shell编程&#xff0c;编译执…

墨迹天气商业版UTF-8模板,Discuz3.4灰白色风格(带教程)

1.版本支持&#xff1a;Discuzx3.4版本&#xff0c;Discuzx3.3版本&#xff0c;DiscuzX3.2版本。包括网站首页&#xff0c;论坛首页&#xff0c;论坛列表页&#xff0c;论坛内容页&#xff0c;论坛瀑布流,资讯列表页(支持多个)&#xff0c;产品列表页(支持多个)&#xff0c;关于…

Visual Components软件有哪些用途 衡祖仿真

Visual Components是一款用于制造业虚拟仿真的软件&#xff0c;主要用于工业自动化和制造领域。我们一起来看一下该软件有哪些功能吧&#xff01; 1、工厂仿真 Visual Components可以建立虚拟的工厂环境&#xff0c;模拟和优化生产流程。用户可以创建工厂布局、定义设备和机器人…

多年没有遇到如此流畅的面试了

美东一公司的面试&#xff0c;有多年没有遇到如此流畅的面试了。 本来说的面试时间是 30 分钟&#xff0c;这个还是第一轮处于电话面试那种&#xff0c;但是不知道为什么最后面试整个时间都延长到了快一个小时&#xff0c;貌似双方都还继续沟通下&#xff0c;有点意犹未尽的感觉…

【Java】正则表达式,校验数据格式的合法性。

个人简介&#xff1a;Java领域新星创作者&#xff1b;阿里云技术博主、星级博主、专家博主&#xff1b;正在Java学习的路上摸爬滚打&#xff0c;记录学习的过程~ 个人主页&#xff1a;.29.的博客 学习社区&#xff1a;进去逛一逛~ 正则表达式 正则表达式&#xff1a; ①可以校…

“第四十五天” 数据结构基本概念

目前看的有关数据结构的课&#xff0c;估计这周就看完了&#xff0c;但感觉差很多&#xff0c;还是和c一样&#xff0c;这样过一下吧。但可能比较急&#xff0c;目前是打算争取寒假回家之前把四大件都先大致过一遍。 数据结构里面有很多新的定义和概念&#xff0c;学到现在&am…

R语言中fread怎么使用?

R语言中 fread 怎么用&#xff1f; 今天分享的笔记内容是数据读取神器fread&#xff0c;速度嘎嘎快。在R语言中&#xff0c;fread函数是data.table包中的一个功能强大的数据读取函数&#xff0c;可以用于快速读取大型数据文件&#xff0c;它比基本的read.table和read.csv函数更…

SELECT COUNT(*) 会造成全表扫描吗?

前言 SELECT COUNT(*)会不会导致全表扫描引起慢查询呢&#xff1f; SELECT COUNT(*) FROM SomeTable 网上有一种说法&#xff0c;针对无 where_clause 的 COUNT(*)&#xff0c;MySQL 是有优化的&#xff0c;优化器会选择成本最小的辅助索引查询计数&#xff0c;其实反而性能…

物联网_00_物理网介绍

1.物联网为什么会出现? 一句话-----追求更高品质的生活, 随着科技大爆炸, 人类当然会越来越追求衣来伸手饭来张口的懒惰高品质生活, 最早的物联网设备可以追溯到19世纪末的"在线可乐售卖机"和"特洛伊咖啡壶"(懒惰的技术人员为了能够实时看到物品的情况而设…

spring cloud Eureka集群模式搭建(IDEA中运行)

spring cloud Eureka集群模式搭建&#xff08;IDEA中运行&#xff09; 新建springboot 工程工程整体目录配置文件IDEA中部署以jar包形式启动总结 新建springboot 工程 新建一个springboot 工程&#xff0c;命名为&#xff1a;eureka_server。 其中pom.xml文件为&#xff1a; …