Pytorch从零开始实战06

Pytorch从零开始实战——明星识别

本系列来源于365天深度学习训练营

原作者K同学

文章目录

  • Pytorch从零开始实战——明星识别
    • 环境准备
    • 数据集
    • 模型选择
    • 开始训练
    • 模型可视化
    • 模型预测
    • 总结

环境准备

本文基于Jupyter notebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。本次实验的目的是了解如何设置动态学习率。
第一步,导入常用包。

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn.functional as F
import random
from time import time
import numpy as np
import pandas as pd
import datetime
import gc
import os
import copy
os.environ['KMP_DUPLICATE_LIB_OK']='True'  # 用于避免jupyter环境突然关闭
torch.backends.cudnn.benchmark=True  # 用于加速GPU运算的代码

设置随机数种子

torch.manual_seed(55)
torch.cuda.manual_seed(55)
torch.cuda.manual_seed_all(55)
random.seed(55)
np.random.seed(55)

创建设备对象

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device # device(type='cuda')

数据集

本次数据集使用的一系列明星图片,每一位明星的图片存放在对应的文件夹中,文件夹名为明星的姓名。
使用pathlib查看类别名称

import pathlib
data_dir = './data/star'
data_dir = pathlib.Path(data_dir) # 转成pathlib.Path对象
data_paths = list(data_dir.glob('*')) 
classNames = [str(path).split("/")[2] for path in data_paths]
classNames

在这里插入图片描述
使用transforms将图片进行预处理,并且使用datasets整合数据集,每个姓名标签对应的一个数字标签。

train_transforms = transforms.Compose([transforms.Resize([224, 224]),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 标准化
])total_data = datasets.ImageFolder("./data/star/", transform=train_transforms)
total_data.class_to_idx

在这里插入图片描述
查看随机五张图片。
在这里插入图片描述
将数据集以8比2划分为训练集和测试集,使用DataLoader划分批次和随机打乱。

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_ds, test_ds = torch.utils.data.random_split(total_data, [train_size, test_size])batch_size = 32
train_dl = torch.utils.data.DataLoader(train_ds,batch_size=batch_size,shuffle=True,)
test_dl = torch.utils.data.DataLoader(test_ds,batch_size=batch_size,shuffle=True,)len(train_dl.dataset), len(test_dl.dataset) # (1440, 360)

模型选择

本次实验我们直接调用官方的数据集,使用官方预训练的VGG16,冻结模型参数,只训练最后一层的参数。

# 调用官方vgg16
from torchvision.models import vgg16
model = vgg16(pretrained = True).to(device) # 加载预训练的vgg16模型for param in model.parameters():param.requires_grad = False # 冻结模型的参数,只训练最后一层的参数model.classifier._modules['6'] = nn.Linear(4096, len(classNames)) # 修改vgg16模型中最后一层全连接层,输出目标类别个数
model.to(device)  
model

在这里插入图片描述
创建模型,使用summary查看参数,VGG16的参数还是比较多的。

from torchsummary import summary
# 将模型转移到GPU中
model = model.to(device)
summary(model, input_size=(3, 224, 224))

在这里插入图片描述

开始训练

定义训练函数

def train(dataloader, model, loss_fn, opt):size = len(dataloader.dataset)num_batches = len(dataloader)train_acc, train_loss = 0, 0for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)opt.zero_grad()loss.backward()opt.step()train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

定义测试函数

def test(dataloader, model, loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)test_acc, test_loss = 0, 0with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()test_loss += loss.item()test_acc /= sizetest_loss /= num_batchesreturn test_acc, test_loss

设置超参数,本次使用官方的学习率衰减,学习率每经过 4 个 epoch 就会以 0.92 的指数衰减。

lambda1 = lambda epoch: 0.92 ** (epoch // 4)
loss_fn = nn.CrossEntropyLoss()
learn_rate = 0.001
opt = torch.optim.SGD(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(opt, lr_lambda=lambda1) # 选定调整方法

开始训练,可能是因为只训练最后一层,模型学习的不是很好。

import time
epochs = 30
train_loss = []
train_acc = []
test_loss = []
test_acc = []T1 = time.time()best_acc = 0
best_model = 0for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)scheduler.step()model.eval() # 确保模型不会进行训练操作epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)if epoch_test_acc > best_acc:best_acc = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)print("epoch:%d, train_acc:%.1f%%, train_loss:%.3f, test_acc:%.1f%%, test_loss:%.3f"% (epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))T2 = time.time()
print('程序运行时间:%s毫秒' % ((T2 - T1)*1000))PATH = './best_model.pth'  # 保存的参数文件名
if best_model is not None:torch.save(best_model.state_dict(), PATH)print('保存最佳模型')
print("Done")

在这里插入图片描述

模型可视化

可视化函数

import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

模型预测

定义预测函数

from PIL import Image classes = list(total_data.class_to_idx)def predict_one_image(image_path, model, transform, classes):test_img = Image.open(image_path).convert('RGB')plt.imshow(test_img)  # 展示预测的图片test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)_,pred = torch.max(output,1)pred_class = classes[pred]print(f'预测结果是:{pred_class}')

调用函数,使用模型预测图片

predict_one_image(image_path='./data/star/Angelina Jolie/001_fe3347c0.jpg', model=model, transform=train_transforms, classes=classes)
# 预测结果是:Angelina Jolie

在这里插入图片描述
使用保存的最佳模型查看一下损失。

best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss # (0.3861111111111111, 1.9115476707617443)

总结

本次调用官方预训练的VGG模型,由于VGG的参数量过大,我们仅训练了最后一层,所以效果不是很好,所以未来数据集比较大的时候,可以放开所有的层重新训练。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/165381.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

线性代数3:矢量方程

一、前言 欢迎回到系列文章的第三篇文章,内容是线性代数的基础知识,线性代数是机器学习背后的基础数学。在我之前的文章中,我介绍了梯队矩阵形式。本文将介绍向量、跨度和线性组合,并将这些新想法与我们已经学到的内容联系起来。本…

vmware 16pro安装 mac10.14.6,期间遇到的问题

1、分配硬盘内存尽量分大点,建议是40g,我分了80g,后面下载解压xcode发现还不够,又增加最后分了120g 2、安装过程,卡在选语言的地方,鼠标和键盘无法操作。需要在虚拟机设置中,勾选以下选项“显示…

SpringBoot 打包与运行

一、SpringBoot 程序打包 1、在Springboot工程 pom文件中&#xff0c;引入 spring-boot-maven-plugin 插件。 <build><plugins><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifact…

视频SDK开发,多平台SDK快速接入

随着科技的不断发展&#xff0c;视频已经成为了企业业务中不可或缺的一部分。无论是在线教育、企业培训还是产品展示&#xff0c;视频都发挥着至关重要的作用。为了满足企业对视频应用的需求&#xff0c;美摄视频SDK应运而生&#xff0c;为企业提供了一站式的视频解决方案。 一…

[架构之路-240]:目标系统 - 纵向分层 - 应用层 - 应用层协议与业务应用程序的多样化,与大自然生物的丰富多彩,异曲同工

目录 前言&#xff1a; - 倒金子塔结构 - 大自然的组成 一、应用层在计算机系统中的位置 1.1 计算机应用程序的位置 1.1.1 业务应用程序概述 1.1.2 应用程序的分类 - 按照计算机作用范围 1.1.3 业务应用程序分类 - 按照行业分类 1.2 网络应用协议的位置 1.2.1 网络协…

浏览器的四种缓存协议

❤️浏览器缓存 在HTTP里所谓的缓存本质上只是浏览器和业务侧根据不同的报文字段做出不同的缓存动作而已 四种缓存协议如下 Cache-ControlExpiresETag/If-None-MatchLast-Modified/If-Modified-Since &#x1f3a1;Cache-Control 通过响应头设置Cache-Control和max-age&…

React基础: 项目创建 JSX 基础语法 React基础的组件使用 useState状态 基础样式控制

01 React 文章目录 01 React一、React是什么1、React的优势 二、React开发环境搭建1、创建项目2、运行项目3、项目的目录结构 三、JSX基础1、什么是 JSX代码示例&#xff1a; 2、JSX使用场景2.1代码示例&#xff1a; 3、JSX中实现列表渲染4、JSX - 实现基本的条件渲染5、JSX - …

最新Ai写作创作系统源码+Ai绘画系统源码+搭建部署教程+支持GPT4.0+支持Prompt预设应用+思维导图生成

一、AI创作系统 SparkAi创作系统是基于OpenAI很火的ChatGPT进行开发的Ai智能问答系统AI绘画系统&#xff0c;支持OpenAI GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署…

Damask使用指南-Hcp结构(镁(考虑孪晶))孪晶如何加入

1&#xff0c;首先利用geom布种子&#xff0c;种子数为40&#xff0c;模型空间尺寸为64*64*1&#xff08;表示二维平面问题&#xff09;代码&#xff1a; 2&#xff0c;根据布种区域生成voronoi镶嵌的晶体结构 代码&#xff1a; 3 检查结构是否正确生成 4&#xff0c;利用dama…

MySQL 性能分析

MySQL 性能分析 对 mysql 进行性能分析&#xff0c;主要就是提升查询的效率&#xff0c;其中索引占主导地位。对 mysql 进行性能分析主要有如下几种方式&#xff1a; 方式一&#xff1a;查看 sql 执行频次 show global status like ‘Com_______’; // global 表示全局 show s…

模拟器-雷电-使用adb push或adb pull操作文件

一、环境 windows 10 雷电模拟器4.0.83 二、问题 有时候我们会需要往模拟器拷贝文件或者复制文件到我的电脑 三、方法 1、获取root权限 adb root adb remount 有可能遇到【daemon not running; starting now at tcp:5037】的报错 查看端口占用进程&#xff1a;netstat -…

国产低功耗MCU芯片:Si24R03

Si24R03集成了基于RISC-V核的低功耗MCU和工作在2.4GHz ISM频段的无线收发器模块&#xff0c;是一款高度集成的低功耗SOC片。 应用领域&#xff1a; 1、物联网 2、智N门锁 3、电机控制 4、消费电子 5、工业控制 其无线收发器模块是专为低功耗无线场合设计&#xff0c;在关…

24、Flink 的table api与sql之Catalogs(java api操作分区与函数、表)-4

Flink 系列文章 1、Flink 部署、概念介绍、source、transformation、sink使用示例、四大基石介绍和示例等系列综合文章链接 13、Flink 的table api与sql的基本概念、通用api介绍及入门示例 14、Flink 的table api与sql之数据类型: 内置数据类型以及它们的属性 15、Flink 的ta…

开箱即用的Appimage是什么以及如何建立快捷方式

1 引言 在使用Linux系统过程中&#xff0c;初学者会遇到无穷多的问题&#xff0c;包括软件的安装问题。 ubuntu的deb,centos的rpm, 当然以及需要解压的tar.gz等等。有一种开箱即用的软件安装类型&#xff0c;格式为Appimage。 AppImage 的官方网站是 AppImage | Linux apps tha…

Spring framework day 02:Spring 整合 Mybatis

前言 在现代软件开发中&#xff0c;数据持久化是一个重要的环节。为了高效、可维护地管理和操作数据库&#xff0c;许多开发者采用了Spring框架和Mybatis持久化框架的组合。Spring提供了依赖注入和面向切面编程等特性&#xff0c;而Mybatis则是一个优秀的对象关系映射&#xf…

力扣每日一题49:字母异位词分组

题目描述&#xff1a; 给你一个字符串数组&#xff0c;请你将 字母异位词 组合在一起。可以按任意顺序返回结果列表。 字母异位词 是由重新排列源单词的所有字母得到的一个新单词。 示例 1: 输入: strs ["eat", "tea", "tan", "ate&quo…

改造xxl-job适配nacos注册中心

xxl-job并没有对nacos、zookeeper这一类注册中心进行适配&#xff0c;所以需要进行改造。 改造目标 1.对调度器&#xff0c;需要能注册到nacos上&#xff0c;并且执行器管理里的 机器地址 能使用 lb://serviceName 这种地址 2.对执行器&#xff0c;需要能注册到nacos上&…

用python写一个贪吃蛇的程序能运行能用键盘控制

用python写一个贪吃蛇的程序能运行能用键盘控制 1.源码2.运行效果 1.源码 开发库使用&#xff1a;pygame random 直接在终端运行&#xff1a;pip install pygame pycharm安装库&#xff1a;文件-设置-项目-Python 解释器 import pygame import random# 初始化pygame pygame…

MATLAB中 tf2zpk函数用法

目录 语法 说明 示例 IIR滤波器的极点、零点和增益 tf2zpk函数的功能是将传递函数滤波器参数转换为零极点增益形式。 语法 [z,p,k] tf2zpk(b,a) 说明 [z, p, k] tf2zpk(b, a) 从传递函数参数 b 和 a 中找到零点矩阵 z&#xff0c;极点向量 p&#xff0c;以及相关的增益…

蓝桥杯(砝码称重,C++)

思路&#xff1a; 1、用到动态规划思想。 2、用ans[i][j]记录用前i个砝码&#xff0c;能不能称出重量j。 3、详细思路见代码注释&#xff0c;易懂。 #include<iostream> #include<cmath> using namespace std; int main() {int n;int a[110];//记录每个砝码重量int…