Spring 项目接入 DeepSeek,分享两种超简单的方式!

⭐自荐一个非常不错的开源 Java 面试指南:JavaGuide (Github 收获148k Star)。这是我在大三开始准备秋招面试的时候创建的,目前已经持续维护 6 年多了,累计提交了 5600+ commit ,共有 550+ 多位贡献者共同参与维护和完善。

DeepSeek 作为一款卓越的国产 AI 模型,越来越多的公司考虑在自己的应用中集成。对于 Java 应用来说,我们可以借助 Spring AI 集成 DeepSeek,非常简单方便!

相关文章推荐:

  • DeepSeek 的这波回答我给满分!
  • IDEA 接入 DeepSeek,太酷了!

Spring AI 是什么?

Spring AI 从著名的 Python 项目(例如 LangChain 和 LlamaIndex)中汲取灵感,解决了 AI 集成中的核心挑战:将企业数据和 API 与 AI 模型连接起来。

你可以将 Spring AI 看作是一个适配器或者高层封装,用来帮你更方便地集成和使用不同的 AI 模型。它的核心目标是简化开发流程,降低使用多种 AI 服务时的复杂性,同时提升代码的可维护性和灵活性。

Spring AI 的主要功能包括:

  • 统一 API: Spring AI 提供了一套统一的接口,用来调用不同的 AI 模型(例如 OpenAI、Hugging Face、DeepSeek、Gemini 等)。开发者只需要学习 Spring AI 的 API,就能无缝对接各种 AI 服务,而无需深入了解各家服务的底层实现和差异。
  • 简化配置: Spring AI 提供了自动化的配置管理,例如 API 密钥、模型参数等。你只需要简单地在配置文件中定义所需的参数,Spring AI 就会自动完成初始化和连接,避免繁琐的手动配置。
  • 易于切换: Spring AI 的抽象设计使得更换 AI 提供商变得非常简单。开发者只需要修改少量配置,而不用修改业务代码,从而实现灵活的 AI 服务切换,适应不同场景需求。

Spring AI 集成 DeepSeek

这里介绍两种方式:

  1. spring-ai-openai starter:伪装成 OpenAI,DeepSeek 提供了 OpenAI 兼容模式。
  2. spring-ai-ollama-spring-boot-starter:通过 Ollama 本地部署一个 DeepSeek R1 蒸馏版。

伪装成 OpenAI

DeepSeek 其实提供了 OpenAI 兼容模式,只要在请求头里加个api_key,就能假装自己在调 OpenAI。Spring AI 的 openai starter 本质上是通过 RestTemplate 发请求,我们只需要改改 URL 和认证方式。

1、添加依赖:

<dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-openai-spring-boot-starter</artifactId><version>0.8.1</version>
</dependency>

2、修改配置文件 application.yml

spring:ai:openai:base-url: https://api.deepseek.com/v1  # DeepSeek的OpenAI式端点api-key: sk-your-deepseek-key-herechat.options:model: deepseek-chat  # 指定DeepSeek的模型名称

3、DeepSeek API KEY 可以在 DeepSeek 开放平台中自行创建,地址:https://platform.deepseek.com/api_keys

4、在代码中调用:

@RestController
@RequestMapping("/ai")
@Slf4j
public class ChatController {private final ChatClient chatClient;// 构造方法注入 ChatClient.Builder,用于构建 ChatClient 实例public ChatController(ChatClient.Builder chatClientBuilder) {this.chatClient = chatClientBuilder.build();}@GetMapping("/chat")public String generate(@RequestParam(value = "message") String message) {log.info("Generating response");// 调用 ChatClient 的 prompt 方法生成响应// 1. prompt(message): 创建一个包含用户输入消息的 Prompt 对象// 2. call(): 调用 ChatClient 与 AI 模型交互以获取响应// 3. content(): 提取响应的内容部分return chatClient.prompt(message).call().content();}}

在运行时,你可以通过在 Prompt 调用中添加新的、针对请求的选项来覆盖默认配置。例如,要为特定请求覆盖默认模型和温度,可以这样实现:

ChatResponse response = chatModel.call(new Prompt("Generate the names of 5 famous pirates.",OpenAiChatOptions.builder().withModel("deepseek-chat").withTemperature(0.4).build()));

本地化部署

如果想要把 DeepSeek 部署在内网服务器,或者你想在本地跑个小模型,可以采用这种方式来在本地部署一个 DeepSeek R1 蒸馏版。

1、从官方网站下载并安装 Ollama:https://ollama.com

Ollama 可以让你轻松在自己的电脑上运行各种强大的 AI 模型,就像运行普通软件一样简单。

2、通过 Ollama 拉取 DeepSeek 模型:

ollama pull deepseek-r1:1.5b
ollama list deepseek

更多版本可以在这里查看:https://ollama.com/library/deepseek-r1

3、添加依赖:

<dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-ollama-spring-boot-starter</artifactId><version>0.8.1</version>
</dependency>

4、修改配置:

spring:ai:ollama:base-url: http://localhost:11434chat:model: deepseek-r1:1.5b  # 与本地模型名称对应

4、在代码中调用:

@RestController
@RequestMapping("/ai")
public class ChatController {private final ChatClient chatClient;// 构造方法注入 ChatClient.Builder,用于构建 ChatClient 实例public ChatController(ChatClient.Builder chatClient) {this.chatClient = chatClient.build();}@GetMapping("/chat")public ResponseEntity<Flux<String>> chat(@RequestParam(value = "message") String message) {try {// 调用 ChatClient 生成响应,并以 Flux<String>(响应流)形式返回Flux<String> response = chatClient.prompt(message).stream().content();return ResponseEntity.ok(response);} catch (Exception e) {return ResponseEntity.badRequest().build();}}
}

Spring Cloud Alibaba AI 中也支持这种方式,并且官网上提供了详细的方法:https://java2ai.com/blog/spring-ai-alibaba-ollama-deepseek/

总结

这篇文章主要介绍了 Spring AI 以及如何通过 Spring AI 集成 DeepSeek:

  1. 伪装成 OpenAI: DeepSeek 可以假装自己是 OpenAI,直接用 Spring AI 的 OpenAI starter 就行,改改配置就好,就像换个链接一样简单。
  2. 本地部署: 如果你想把 DeepSeek 放在自己服务器上,或者想在电脑上跑个小模型玩玩,可以用 Ollama。先下载 Ollama,再下载 DeepSeek 模型,然后用 Spring AI 的 Ollama starter,也超级简单。Spring Cloud Alibaba AI 也支持这种玩法,官网有教程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/16649.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LeetCode】689、三个无重叠子数组的最大和

【LeetCode】689、三个无重叠子数组的最大和 文章目录 一、dp1.1 dp 二、多语言解法 一、dp 1.1 dp // go // 输入: nums[] // 计算: 找三段长度为 k 的不重叠的子数组. 要求这 3k 个元素之和最大 // 输出: 三段子数组的 起始位置. 若有多个结果, 返回字典序最小的一个 func …

transformer

导语&#xff1a; 2017年&#xff0c;一篇名为《Attention is All You Need》的论文横空出世&#xff0c;提出了Transformer模型&#xff0c;彻底改变了自然语言处理&#xff08;NLP&#xff09;领域的格局。Transformer以其独特的结构和强大的性能&#xff0c;迅速成为NLP领域…

DeepScaleR:仅用 1.5B 参数超越 OpenAI O1-Preview 的强化学习模型

1. 项目概述 1.1 项目目标与意义 DeepScaleR 项目旨在通过强化学习技术推动人工智能模型的性能提升,以更低的成本实现更优的推理能力。其核心目标是开发出在特定任务上超越现有模型的高效模型,同时为开源社区提供技术参考,促进技术的普惠和创新。 技术突破:DeepScaleR-1.…

深入理解指针初阶:从概念到实践

一、引言 在 C 语言的学习旅程中&#xff0c;指针无疑是一座必须翻越的高峰。它强大而灵活&#xff0c;掌握指针&#xff0c;能让我们更高效地操作内存&#xff0c;编写出更优化的代码。但指针也常常让初学者望而生畏&#xff0c;觉得它复杂难懂。别担心&#xff0c;本文将用通…

八、OSG学习笔记-

前一章节&#xff1a; 七、OSG学习笔记-碰撞检测-CSDN博客https://blog.csdn.net/weixin_36323170/article/details/145558132?spm1001.2014.3001.5501 一、了解OSG图元加载显示流程 本章节代码&#xff1a; OsgStudy/wids CuiQingCheng/OsgStudy - 码云 - 开源中国https:…

在 ARM64 架构系统离线安装 Oracle Java 8 全流程指南

在 ARM64 架构系统离线安装 Oracle Java 8 全流程指南 文章目录 在 ARM64 架构系统离线安装 Oracle Java 8 全流程指南一、引言二、下载前的准备2.1 确认系统架构2.2 注册 Oracle 账号 三、从 Oracle 官方下载 Java 8 for ARM643.1 访问 Oracle Java 存档页面3.2 选择合适的版本…

栈的简单介绍

一.栈 栈是一种先进后出的结构&#xff1a;&#xff08;先出来的是45&#xff0c;要出12就必须先把前面的数据全部出完。&#xff09; 2.实例化一个栈对象&#xff1a; 3.入栈&#xff1a; 4.出栈&#xff1a;&#xff08;当走完pop就直接弹出45了。&#xff09; 5.出栈的…

java韩顺平最新教程,Java工程师进阶

简介 HikariCP 是用于创建和管理连接&#xff0c;利用“池”的方式复用连接减少资源开销&#xff0c;和其他数据源一样&#xff0c;也具有连接数控制、连接可靠性测试、连接泄露控制、缓存语句等功能&#xff0c;另外&#xff0c;和 druid 一样&#xff0c;HikariCP 也支持监控…

HCIA项目实践--RIP相关原理知识面试问题总结回答

9.4 RIP 9.4.1 补充概念 什么是邻居&#xff1f; 邻居指的是在网络拓扑结构中与某一节点&#xff08;如路由器&#xff09;直接相连的其他节点。它们之间可以直接进行通信和数据交互&#xff0c;能互相交换路由信息等&#xff0c;以实现网络中的数据转发和路径选择等功能。&am…

【ThreeJS Basics 1-3】Hello ThreeJS,实现第一个场景

文章目录 环境创建一个项目安装依赖基础 Web 页面概念解释编写代码运行项目 环境 我的环境是 node version 22 创建一个项目 首先&#xff0c;新建一个空的文件夹&#xff0c;然后 npm init -y , 此时会快速生成好默认的 package.json 安装依赖 在新建的项目下用 npm 安装依…

【JavaEE进阶】依赖注入 DI详解

目录 &#x1f334;什么是依赖注入 &#x1f384;依赖注入的三种方法 &#x1f6a9;属性注⼊(Field Injection) &#x1f6a9;Setter注入 &#x1f6a9;构造方法注入 &#x1f6a9;三种注⼊的优缺点 &#x1f333;Autowired存在的问题 &#x1f332;解决Autowired存在的…

在Mac arm架构终端中运行 corepack enable yarn 命令,安装yarn

文章目录 1. 什么是 Corepack&#xff1f;2. 运行 corepack enable yarn 的作用3. 如何运行 corepack enable yarn4. 可能遇到的问题及解决方法问题 1&#xff1a;corepack 命令未找到问题 2&#xff1a;Yarn 未正确安装问题 3&#xff1a;权限问题 5. 验证 Yarn 是否启用成功6…

16.React学习笔记.React更新机制

一. 发生更新的时机以及顺序## image.png props/state改变render函数重新执行产生新的VDOM树新旧DOM树进行diff计算出差异进行更新更新到真实的DOM 二. React更新流程## React将最好的O(n^3)的tree比较算法优化为O(n)。 同层节点之间相互比较&#xff0c;不跨节点。不同类型的节…

SQL数据清理:去除字段值中的多余符号(Demo例子)

目录 前言1. 基础2. 进阶 前言 Excel中有大量不合法的符号&#xff0c;导入到系统之后&#xff0c;数据库有很多脏数据&#xff0c;对此下述展开sql的清洗教程 在数据库的文本字段中&#xff0c;可能会存在多余的逗号或符号&#xff0c;如,销售,, 或 二手车,销售,,这种情况 希…

计算机组成原理

观看地址如下【2019版】1.3.2 性能指标2——速度_哔哩哔哩_bilibili 第一章 计算机系统概述 了解 #低电平高电平 #计算机的发展 主要是因为逻辑元件的限制 选择题 微处理器的发展 这里的机器字长为 软硬件的发展 几种指令和数据流 计算机的系统结构 需求产生变化 电信号…

基于MATLAB的沥青试样孔隙率自动分析——原理详解与代码实现

摘要 在材料科学与土木工程领域&#xff0c;沥青孔隙率是评价其耐久性和稳定性的重要指标。本文提出一种基于图像处理的孔隙率自动计算方法&#xff0c;通过MATLAB实现灰度化、对比度增强、形态学处理等关键步骤&#xff0c;最终输出试样孔隙率。代码注释清晰&#xff0c;可直…

【嵌入式Linux应用开发基础】open函数与close函数

目录 一、open函数 1.1. 函数原型 1.2 参数说明 1.3 返回值 1.4. 示例代码 二、close函数 2.1. 函数原型 2.2. 示例代码 三、关键注意事项 3.1. 资源管理与泄漏防范 3.2. 错误处理的严谨性 3.3. 标志&#xff08;flags&#xff09;与权限&#xff08;mode&#xff…

【通俗易懂说模型】一篇弄懂几个经典CNN图像模型(AlexNet、VGGNet、ResNet)

&#x1f308; 个人主页&#xff1a;十二月的猫-CSDN博客 &#x1f525; 系列专栏&#xff1a; &#x1f3c0;深度学习_十二月的猫的博客-CSDN博客 &#x1f4aa;&#x1f3fb; 十二月的寒冬阻挡不了春天的脚步&#xff0c;十二点的黑夜遮蔽不住黎明的曙光 目录 1. 前言 2. …

Android 14.0 Launcher3单层模式workspace中app列表页排序功能实现

1.概述 在14.0的定制化开发中,对于Launcher3的功能定制也是好多的,而对于单层app列表页来说排序功能的开发,也是常有的功能这就需要了解加载app数据的流程,然后根据需要进行排序就可以了,接下来就来实现这个功能 如图: 2. Launcher3单层模式workspace中app列表页排序功能…

8K样本在DeepSeek-R1-7B模型上的复现效果

7B Model and 8K Examples: Emerging Reasoning with Reinforcement Learning is Both Effective and Effic (notion.site) 港科大助理教授何俊贤的团队以Qwen2.5-Math-7B&#xff08;基础模型&#xff09;为起点&#xff0c;直接对其进行强化学习。整个过程中&#xff0c;没有…