「我的AIGC咒语库:分享和AI对话交流的秘诀——如何利用Prompt和AI进行高效交流?」

文章目录

  • 每日一句正能量
  • 前言
  • 基础介绍
  • 什么是Prompt?
  • 什么是 Prompt Engineering?
  • 为什么需要 Prompt Engineering?
  • 如何进行 Prompt Engineering?
  • Prompt的基本原则
  • Prompt的编写模式
  • AI 可以帮助程序员做什么?
    • 技术知识总结
    • 拆解任务
    • 阅读代码/优化代码
    • 代码生成
    • 生成单测
    • 更多 AI 应用/插件
  • AI可以帮助其他人做什么?
    • 能在表格中规范便捷地记录多元数据
    • 数据的收集、填报、协同功能灵活,可满足多种场景
    • 数据的可视化和统计分析简单实用
    • 支持自动化提醒、自动化规则,办公自动化轻松高效
    • 可自定义各种审批流程、任务流转流程,实现对工作流程管理的自动化和整合化
  • Prompt Engineering 的前景和挑战
  • 后记

每日一句正能量

既然降生到这世上,我就要好好看看它,找到属于自己的世界第一。

前言

人工智能(AI)是当今科技领域的热门话题,尤其是自然语言处理(NLP)技术,它可以让机器理解和生成自然语言。随着大型语言模型(LLM)的发展,如 GPT-3、DALL-E 等,我们可以利用这些模型来完成各种有趣和有用的任务,如写诗、画画、编程等。但是,要让这些模型按照我们的意愿工作,并不是一件容易的事情。这就需要用到一种叫做 Prompt Engineering 的技术。

当你还在错误使用对话 AI 工具如 GPT,可能会觉得其作用不过是知识平移总结或简单问答。实际上,当了解先进的用法、知悉如何做到 better prompt,你会发现:AI 不是来替代你的,是来帮助你更好工作。如果还用搜索引擎的“关键词匹配”、“关键词命中”思路去思考人工智能的使用,已然有些落后。本篇在详细介绍几个GPT帮助程序员工作(干货满满)的应用场景之后,将为你分享AI的正确打开方式——better prompt。

基础介绍

  1. AIGC提示词通常由多个单词、词组或短句构成,以,分割组成;
  2. 提示词分为正向提示词(positive prompt)和反向提示词(negative prompt)。正向确定生成方向,反向排除生成方向;
  3. 总数量建议不超过75个;
  4. AI程序会依照概率来选择性执行,如果提示词之间有冲突,AI会根据权重确定的概率来随机选择执行哪个提示词;
  5. 生成图片的尺寸越大,需要的提示词就越多,否则提示词之间会相互污染;
  6. 提示词支持使用emoji : call_me_hand:,且表现力较好。

什么是Prompt?

prompt顾名思义就是“提示”的意思。prompt简单来说就是你给AI的指令。prompt可以是一段文字,比如你和ChatGPT等对话的,也可以是按照一定的格式的参数描述,比如AI绘图的软件,使用参数的情况比较多。

提示词(Prompt)是与AI模型交流的语言,用以告诉AI模型想要生成的图像的特征。提示词的准确性、精准度直接决定了生成的图像是否符合我们的预期。

和Prompt对应的一个专业词汇是Prompt Engineering(PE)。PE是人工智能(AI)领域中的一个概念,尤其是自然语言处理(NLP)领域。PE通常通过将问题转换为特定格式的输入,并使用预定义的模板、规则和算法来处理,让AI能够更好地理解任务并给出相应的回答。PE的优点是可以使AI更加灵活和精确地理解任务,并且能够减少因为语言表达不清晰而导致的误解和错误,使其能够准确、可靠地执行特定任务。

通俗来说,就是你要掌握和AI对话的技巧,让AI真正的懂你,特别是现在很多的AI产品的智能化水平都还有待进一步的提升,因此,学一点Prompt Engineering的知识是很有必要的。

什么是 Prompt Engineering?

Prompt Engineering 是一种在人工智能领域,特别是自然语言处理领域的概念。它指的是如何设计输入数据,使其能够清楚地描述任务,并引导模型给出正确和合理的输出。换句话说,它就是给 AI 模型的指令。

Prompt 可以是一个问题、一段文字描述,甚至可以是带有一堆参数的文字描述。AI 模型会基于 prompt 所提供的信息,生成对应的文本或图片。

为什么需要 Prompt Engineering?

你可能用过不少 AI 相关的产品,你或许会觉得好像只需要会说话、会打字,就能让 AI 输出答案。好像不需要什么技术。

但实际上,并不是所有的 prompt 都能得到满意或精确的答案。因为人类的语言从根本上说是不精确的2,目前机器还没法很好地理解人类说的话3。所以才会出现 Prompt Engineering 这个技术。另外,受制于目前大语言模型 AI 的实现原理4,部分逻辑运算问题、格式问题等等都需要额外对 AI 进行提示。

举个例子,在 ChatGPT 里输入这样一个简单数学题:

What is 100*100/400*56?

ChatGPT 会返回一个错误答案:

0.4464

但如果我们稍微改变一下 prompt 的格式:

Calculate: (100*100)/(400*56)

ChatGPT 就会返回正确答案:

0.04464

可见 prompt 的设计对于结果有很大影响。

如何进行 Prompt Engineering?

Prompt Engineering 是一门艺术也是一门科学。它需要结合创造力和逻辑思维来设计出最优化的 prompt 。目前还没有统一标准或规则来指导 prompt 的设计 ,但有一些基本原则和建议可以参考:

包含完整且相关的信息:prompt 应该尽可能地提供足够多和具体化的信息来描述任务,并避免无关或冗余信息。

简洁易懂并减少歧义:prompt 应该使用简单明了且无歧义性质词汇表达任务,并避免使用复杂或模棱两可词汇。

明确标签空间:prompt 应该清楚地定义输出结果所属范围,并在示例中按照真实分布采样标签。

统一格式:prompt 应该保持输入和输出数据格式统一,并在示例中展示格式的要求。

下面是一些 prompt 的实例,可以看出不同的 prompt 对于结果有不同的影响:

Less effective prompt:

Write a poem about OpenAI.

Output:

OpenAI is a visionOf a future that is brightWhere machines can learn and createAnd help us do what's rightOpenAI is a missionTo make AI accessibleTo everyone who wants to use itAnd make it beneficialOpenAI is a challengeTo push the boundaries of AIAnd explore the possibilitiesThat lie beyond the sky

Better prompt:

Write a short inspiring poem about OpenAI, focusing on the recent DALL-E product launch (DALL-E is a text to image ML model) in the style of William Blake.Output:To see the world in a grain of sand,And a heaven in a wild flower,Hold infinity in the palm of your hand,And eternity in an hour.This is the power of DALL-E,The latest wonder from OpenAI,A model that can generate images,From any text that you supply.With DALL-E you can create,A new world of imagination,Where anything you can think of,Becomes a visual sensation.DALL-E is not just a tool,But a source of inspiration,A glimpse of what AI can do,To enrich our human nation.

Prompt的基本原则

和AI交互时,Prompt的基本原则是十分重要的。提交Prompt时,应该遵循以下原则,以确保机器能够更好地理解用户的意图并给出相应的回答:

  1. 明确任务描述:在提交Prompt时,应该尽可能清晰明确地描述任务的具体信息,包括任务目标、所需操作、相关条件等。
    例如,在与AI聊天机器人交互时,可以通过简单的问题来引导机器理解用户需求。如:“你需要我帮你做什么?” “你需要查询什么信息?” 能够尽量明确任务描述,让机器能够更好地理解用户需求并给出相应建议。

  2. 使用常用词汇:在提交Prompt时,应使用常见的词汇和语言表达方式,避免使用生僻单词和复杂的句式,以便机器更容易理解。

  3. 考虑语境和上下文:在提交Prompt时,应该考虑到所处的语境和上下文环境,以便机器能够从语言环境中获取更多的信息来理解用户的意图。

  4. 提供多样化信息:在提交Prompt时,应该尝试提供多样化的信息,包括文字、图像、语音等,以促进机器更全面地理解用户需求。

  5. 确定回答形式:在提交Prompt时,应该确定回答的形式,例如文字、语音等,并确保机器可以合理地解析和输出回答信息。

更进一步的原则包括,向机器提供足够的上下文信息、结构清晰地组织Prompt以使机器更容易进行处理,使用简单明了的问题引导用户去表述建议,从而更好地理解需求。此外,在交互中,用户还应该尽量用简短的句子提出问题,以便AI机器人更快速和准确地回答问题。

Prompt的编写模式

这里介绍4种常用的Prompt模式,平时遇到的可能是这几种的变种或是组合。

  1. 特定指令(By specific)
    在这种模式下,我们给模型提供一些特定信息,例如问题或关键词,模型需要生成与这些信息相关的文本。这种模式通常用于生成答案、解释或推荐等。特定信息可以是单个问题或多个关键词,具体取决于任务的要求。

如以 翻译、告诉我,等关键字开头:

翻译一下:Prompt Engineering?

告诉我“Prompt Engineering”的定义?

在这种模式下,AI可以帮我完成:补全句子,文字翻译,文本摘要,问答和对话等任务,这是最常用的Prompt模式。

  1. 指令模板(Instruction Template)
    在这种模式下,我们给模型提供一些明确的指令,模型需要根据这些指令生成文本。这种模式通常用于生成类似于技术说明书、操作手册等需要明确指令的文本。指令可以是单个句子或多个段落,具体取决于任务的要求。

这种模式下,可以让AI具体地了解你想要的内容:

例如,让AI推荐三本中文科幻小说,可以这样写

给我推荐三中文的科幻小说,

推荐格式:1、书名:2、作者:3、主要内容:4、推荐理由:

在这种模式下,你还可以将一段话按照你给的模板,让AI帮你总结。也可以是你给AI一些答案的例子,AI通过学习,给出他的答案。

  1. 代理模式(By proxy)
    Proxy 模式是指用户可以要求 ChatGPT 以特定的身份、角色或者身份扮演某个特定的人、角色或对象来生成回答。这种模式通常用于模拟某个特定人物的语言风格和语境,生成特定情境下的对话、回答或其他形式的文本。

这个模式也是比较的常用的,前段时间大家让chatGPT写申论就是代理模式。例如,描述秋天,小学生、大学生、老年人的不同身份,内容是有很大的不同,AI的身份和角色的把握还是很准确的。因此,在提问前告诉你的身份很重要。

  1. 示例模式(By demonstration)
    在这种模式下,我们给模型提供一些示例文本,模型需要生成与示例文本类似的文本。这种模式通常用于生成类似于给定示例的文本,例如自动生成电子邮件、产品描述、新闻报道等。示例文本可以是单个句子或多个段落,具体取决于任务的要求。

AI 可以帮助程序员做什么?

技术知识总结

刚开始接触学习一门技术的时候,难免需要去查看文档。现在的手册非常丰富。往往对于一个初学者来说,需要接触的信息太多、排版五花八门,学起来云里雾里。

这时候就可以借助 ChatGPT 的总结能力,例如我想学习一下 K8S 的相关知识,我发给它一个文档的地址,让它帮我总结。

prompt: https://kubernetes.io/zh-cn/docs/concepts/overview/ 总结这篇文档。

在这里插入图片描述
可以看到,它很好地总结了这篇中文的文档,并且对每一个关键点进行了概括。用最少的语言让你能够搞懂你想要的知识点。

因为 ChatGPT 是有上下文的,它知道你需要的内容是中文的总结,所以在这里你继续发一篇英文的文档给它,它也会用中文帮你总结。

prompt: 总结这篇文档https://kubernetes.io/docs/concepts/overview/components/ 。

在这里插入图片描述
目前 chatgpt 的免费版本数据库的截止时间是 2021 年,也就是说如果问它比较新的内容,它是无法总结的,甚至是会随意编撰。例如这里询问一个关于电影《流浪地球 2》的问题,让它总结一下 wikipedia 里的介绍。

prompt: 总结:https://zh.wikipedia.org/zh/%E6%B5%81%E6%B5%AA%E5%9C%B0%E7%90%832

在这里插入图片描述
因为这时候电影还没有上映,所以之前的内容还都是错误的,它的总结是不准确的。

当我们将整个网站的内容复制进来,让 chatgpt 进行总结。但是这时候会发现,文章太长了,会收到报错。
在这里插入图片描述
这时候,就要运用自己的想象力,使用 prompt 来进行突破了。我们需要把文章进行段落拆分,每一段都符合它的标准。
在这里插入图片描述
将内容拆分成 7 段,发送完成之后,它就会自动总结了。
在这里插入图片描述
这样,才能得到了一篇文档的正确总结。

拆解任务

上文所描述的内容,可以算是借助 AI 让程序猿日常生活效率提升。那么在工作当中,AI 如何帮助我们提效?

我们从需求端获取一个需求以后,很多情况下我们的任务并不能够非常准确的估计时,原因就是我们并没有将任务拆分清楚,所以并不能够对每一项任务进行估计,导致风险的发生。

这时候可以简要描述一下我们这次的需求点,让 ChatGPT 帮我们进行任务拆解。
在这里插入图片描述
可以看到任务整体被拆成了一个个细小的任务。它可以很快的让我们将任务转换为 task,或者是需求跟踪单。这既方便和产品经理进行沟通,也便于我们自身排期。转换成 KANBAN 模式也便于了解当前进度。

如果对方仍有疑问,可以继续询问拆解。比如我们想要询问第三步应该如何进一步实现。可以看到它甚至给了我们具体的 UI 交互。我们可以利用这样的提示对我们的交互以及实现提供一定的参考。
在这里插入图片描述

阅读代码/优化代码

开发者经常接手别人的代码。质量参差不齐,还会夹在很多奇怪的命名。当我们阅读整体逻辑或者修改逻辑,可能会因为自身阅读的问题造成理解偏差,进一步引发 bug。

如果将这个方法交给 AI 去阅读呢?可以看看效果。

prompt:逐行解释下面的代码 + 代码内容, (在这里使用了一段在 github上面的开源代码进行展示, 这段代码是一段定时器相关的内容)。

在这里插入图片描述
可以看到 ChatGPT 正确的理解了我们的代码,对代码进行了解释和说明。

但是这时候只是生成了一个整体的说明,并没有对每一行分别进行解释。这时候继续和它对话:

prompt:可以在每一行代码上面加上注释,便于我理解吗?

在这里插入图片描述
这时候它会逐行的进行代码标注,便于你对每一行进行理解。如果你接着对它提出一个粗浅的优化需求,它也会照做。

prompt: 这段代码可以进行重构和优化吗?逻辑有些繁琐。

在这里插入图片描述
你可以对某一个部分提出更细节的要求,为它提出更好的优化方向。在这里我们提出了关于参数顺序耦合的问题,可以看到 GPT 也理解到了我们的需求,并且做出了对应的优化,如下:

prompt: 
children: (isCounting: boolean, durationTime: number, startCount: () => void) => React.ReactNode // 子组件,接收三个参数,返回一个React节点这里面的参数太多了,而且对顺序有强依赖,该怎么优化这里?

在这里插入图片描述

代码生成

开发者在工作中还有一种场景的工作量比较大,需要复杂的逻辑思考。但是实际上最终的代码可能只需要几行就可以搞定。你在思考过程中觉得很痛苦,想和身边的同事去沟通。也许你给他解释完这个逻辑以后,他非但不能帮你思考,反而将一人份痛苦变成两人份。

例如,我们要进行数据转换,是否也可以交给AI来做?我们发送给 GPT 这样的 prompt,将数据结构进行转换。数据源为:

[{"candidates": null,"candidatesX": null,"description": "role---用户角色","label": "角色","name": "role","optional": true,"schema": null,"type": "String"},
{"candidates": null,"candidatesX": null,"description": "Topics of the pulsar server to create---需要创建的主题","items": {"schema": [{"candidates": null,"candidatesX": null,"description": "topic name---主题名称","label": "主题名称","name": "name","schema": null,"type": "String"},{"candidates": null,"candidatesX": null,"default": 1,"description": "partition number---分区数","label": "分区数","name": "partitions","schema": null,"type": "Integer","validator": ">0"}],"type": "Object"},"label": "主题列表","name": "topics","optional": true,"schema": null,"type": "List"}]
我想要得到的数据是 type 为 List 的数据,并且数据结构为:
[
{type:List, name:"topics", needValidates:[{name:"name", type:"String"
},{name:"partitions", type:"Integer"}] }]

GPT 会为我们得到正确的结果:
在这里插入图片描述
我们只需要输入目标数据结构,转换后的数据结构,无需指定语言。因为它会从你的上下文里理解到你是想要问什么实现方式。

还有执行脚本,我们只需要描述清楚我们的需求,它也会帮助我们进行完善。
在这里插入图片描述
此外,它还可以进行进行解释说明:
在这里插入图片描述
上面可以看到,我们在这里使用了一次“自然语言编程”的操作流程。不论你是否会使用 python、bash 你都可以正常的描述你的需求。进行生成。

我们还可以进行代码转换,例如你写了一段 js 代码,你希望将这段代码转化为python,以前我们会通过 Google 搜索看看有没有对应的转换器,现在就只需要交给 gpt 来执行。提出你的诉求,它会在 10s 内为你生成一段没有 bug,包含异常处理的代码。这里我们不展开举例。

生成单测

我们刚刚那段数据转化的代码,如果我们想要进行测试。以前我们可能会苦思冥想很多场景进行补充。现在只需要告诉 AI 帮我生成单测即可。

prompt:(代码内容) 为这段代码生成 unit test。

在这里插入图片描述
如果你觉得测试条件不够,那就再问它,让它再生成。

prompt: 数据源不够丰富,多测试集中边界条件,比如数据不存在,数据类型无法转换,数据类型不对等。

在这里插入图片描述
它还会给你解释这里都做了什么操作,这些测试用例覆盖了不同的场景,包括:

当数据源中没有类型为 List 的字段时,应该返回空数组;当数据源中有类型为 List 的字段时,应该返回正确的字段数组,包括需要的验证。

更多 AI 应用/插件

AI 就像是一个基础应用, 在它上面还有着很多的可能。随着你用的越多,解锁的技能也就越丰富。例如现在 GPT 系列甚至推出了自己的应用市场。下面我们来为各位简单介绍几款热门插件:

  • AIPRM
    它是 ChatGPT3.5 时代的应用商店。用户通过不同的 prompt,对它进行训练,达到自己的目的。

例如我们在文章最开始介绍的“长文总结”能力:我们普通的和它进行交流,那么字数限制就会成为瓶颈。但是如果我们转化了沟通技巧,那么就可以突破这一限制。AIPRM 就是一个充满了奇思妙想的插件系统,你可以在里面查找/发布各种你想要的 prompt。
在这里插入图片描述

  • Voice Control for ChatGPT
    依托于这样的系统,我们可以使用它锻炼英文(伪需求)。或者是直接用语音和它进行对话,让它替自己写代码,例如我们刚刚所有的脚本说明都可以让它直接语音转文字发出去。

它也很好的服务了一些视障人士,因为它还会读出每一次 GPT 生成的内容。让每个人都拥有平等接触 AI的机会。
在这里插入图片描述

  • ChatGPT Sidebar
    随着使用的人越来越多,ChatGPT 的响应速度越来越慢。有时候只不过想问一个简单的问题,却要等上很久。这时候,就可以使用 ChatGPT Sidebar 插件。

它内置了 ChatGPT 的 API,可以直接集成在你的搜索引擎里,你的每一次搜索都会触发(也可以设置为手动),免注册,使用方便。还可以让它提示你如何搜索相关的关键词。
在这里插入图片描述
在它的侧边栏里,我们还可以进行其它的操作。
在这里插入图片描述

  • 著名应用工具使用体验:Bing Copilot、ChatGPT、Google Bard
    那我们再回头看看几个影响力比较高的AI工具。笔者个人现常用的基础 AI 工具大概有 3 种,分别是 Bing Copilot、ChatGPT、Google Bard。最被广泛使用的 ChatGPT(GPT3-5),我们先来看看它的自我介绍是什么。

ChatGPT:使用频率最高的 AI。它有强大的上下文,还可以拆分成为不同的 conversation,便于它处理不同的对话。

例如一个控制台的项目,可以单独做一个对话,这样它聊的上下文都是围绕这个主题进行,每次新的问答也无需补充上下文信息。
在这里插入图片描述
Bing :Bing 在很早就使用了 GPT-4,可是因为对话数实在是太少了(从 5 次扩充到了 15 次),每一次对话的内容长度也很有限(截止目前仍只有 2000 字) 而且不能保存对话上下文,导致使用起来实在很不方便。好处是它是实时联网的,所以作者主要用于搜索最新的资讯以及总结一些文章和文档的摘要,以及辅助 ChatGPT 使用,对比一下两遍生成的逻辑是否一致。优点就是,搜索结果会给出详细的出处以及引用地址。
在这里插入图片描述
Google Bard (LaMDA):Google 近期发布的AI工具目前只支持英文。特点是能够给出多个回答,而且响应速度很快。集成了 Google it,点击之后会帮你生成一个最适合你的问题的 google 搜索关键词。这算是和 Bing Copilot 反其道而行之,一个是将 chat 集成到搜索里,一个是将搜索集成到了 chat 中。
在这里插入图片描述

AI可以帮助其他人做什么?

就笔者身边的情况来看,电脑的的初级应用会多一点,比如Excel、Word文档、PPT等的自动化办公应用,帮助人们进行考勤、薪酬等的自动化管理和优化等。

办公自动化(Office Automation,简称OA)是将现代化办公和计算机技术结合起来的一种新型的办公方式。办公自动化没有统一的定义,凡是在传统的办公室中采用各种新技术、新机器、新设备从事办公业务,都属于办公自动化的领域。 通过实现办公自动化,或者说实现数字化办公,可以优化现有的管理组织结构,调整管理体制,在提高效率的基础上,增加协同办公能力,强化决策的一致性 。

从使用场景来说,有文案修改、数据收集、数据协作、数据保存、数据处理、数据可视化、统计分析、图表制作、审批流程、应用制作等;从种类来说也比较多样,比如传统的 Excel、WPS、Word、PPT、Photoshop、Seafile等就是比较基础的办公软件或办公自动化软件,甚至可以再进行细分;比如企业微信、钉钉就是比较主流的企业通讯与办公工具,可以助力企业高效办公和管理,属于生态型办公平台。但无论是哪种软件,目的都是为了有效解决工作中的问题,节约资源,提高工作效率和管理效益。甚至它还可以和一个企业的业务结合的非常紧密,比如定制化软件、个性化应用,只需点击按钮就可以得到想要的结果。话说回来,软件只是一个工具,关键靠人去用,企业应用深度与否取决于企业的重视程度,以及配套的管理制度保证和供应商的服务能力,两者缺一不可。总体上,一般具备以下特点的办公自动化软件更受企业和使用者青睐:

  • 灵活的自定义
  • 傻瓜式的操作
  • 性能要求
  • 便于维护
  • 性价比高

能在表格中规范便捷地记录多元数据

SeaTable 表格支持多达24种数据类型,不仅能记录文本、数字、日期这类基础数据,还可以记录文件、图片、长文本、单选、多选、勾选、地理位置、评分、邮箱、URL、创建者、创建时间、修改者、修改时间等,还能用按钮、公式、链接其他记录、链接计算实现交互办公、同表计算、跨表关联及计算等。要比 Excel 更简单方便。
在这里插入图片描述
在这里插入图片描述

数据的收集、填报、协同功能灵活,可满足多种场景

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

数据的可视化和统计分析简单实用

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

支持自动化提醒、自动化规则,办公自动化轻松高效

在这里插入图片描述

可自定义各种审批流程、任务流转流程,实现对工作流程管理的自动化和整合化

在这里插入图片描述
在这里插入图片描述

Prompt Engineering 的前景和挑战

Prompt Engineering 是一个新兴且有趣的领域,它为人工智能的应用提供了更多可能性和灵活性。随着大语言模型的不断进步,我们可以期待更多惊喜和创新。

但 Prompt Engineering 也面临着一些挑战和限制,比如:

如何评估 prompt 的质量和效果?

如何自动化或半自动化 prompt 的生成和优化?

如何保证 prompt 的安全性和道德性?

如何适应不同语言、领域、场景、用户等因素?

这些问题需要我们持续地探索和研究,以提高 Prompt Engineering 的水平和价值。

后记

Prompt Engineering 是一种在人工智能领域,特别是自然语言处理领域的技术。它指的是如何设计输入数据,使其能够清楚地描述任务,并引导模型给出正确和合理的输出。Prompt Engineering 需要结合创造力和逻辑思维来设计出最优化的 prompt,这也就是 Prompt Engineer 存在的价值所在。

几乎对于所有入门计算机课程的人来说,题图中的两个单词 “hello world” 就是大家最开始使用计算机语言与机器沟通的第一句话,不过随着 AI 及时的发展和普及,大家都可以直接用最简单最自然的话语让 AI 告诉你怎么让机器来执行和输出 “hello world” 。

转载自:https://blog.csdn.net/u014727709/article/details/133977517
欢迎start,欢迎评论,欢迎指正

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/167088.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C语言进阶】文件操作

文件操作 1. 为什么使用文件2. 什么是文件2.1程序文件2.2 数据文件2.3 文件名 3. 文件的打开和关闭3.1 文件指针3.2 文件的打开和关闭 4. 文件的顺序读写4.1 对比一组函数 5. 文件的随机读写5.1 fseek5.2 ftell5.3 rewind 6. 文本文件和二进制文件7. 文件读取结束的判定7.1 被错…

react配置 axios

配置步骤(基本配置): 1.安装 axios cnpm install axios --save2.src/utils 新建一个 request.js文件(没有utils就新建一个目录然后再建一个request.js) 3.request代码如下: 这个是最简单的配置了,你可以根据自己的需…

solidworks 2024新功能之-让您的工作更加高效

您可以创建杰出的设计,并将这些杰出的设计将融入产品体验中。为了帮您简化和加快由概念到成品的产品开发流程,SOLIDWORKS 2024 涵盖全新的用户驱动型增强功能,致力于帮您实现更智能、更快速地与您的团队和外部合作伙伴协同工作。 SOLIDWORKS…

61 不同路径

不同路径 重点:从左上角移动到右下角,m-1次向右,n-1次向下题解1 DP降维——滚动数组 题解2 求解组合 C m n − 2 m − 1 C^{m-1}_{mn-2} Cmn−2m−1​的值 一个机器人位于一个 m x n 网格的 左上角 (起始点在下图中标记为 “St…

FreeRTOS学习day1

顾名思义 免费的实时操作系统 用法基本和Linux下的多线程编程类似 探索者开发版实验 动态创建4个任务start_task task1 task2 task3 优先级依次为1 2 3 4 (注意优先级不能为0,0是空闲任务) 我的理解:主线程start_task 主线程 task1 ta…

Linux:实用操作

Linux:实用操作 1. 各类小技巧1.1 controlc(ctrl c) 强制停止1.2 可以通过快捷键:control d(ctrl d),退出账户的登录1.3 历史命令搜索1.4 光标移动快捷键 2. 软件安装2.1 介绍2.2 yum命令(需要root权限)在这里插入图片描述 3. systemctl4.…

从0-1,使用腾讯OCR进行身份证识别

目录 1.申请腾讯OCR权限 2.代码思路 3.Postman测试​ 1.申请腾讯OCR权限 获取 secretId 和 secretKey,见上文从0到1,申请cos服务器并上传图片到cos文件服务器-CSDN博客https://blog.csdn.net/m0_55627541/article/details/133902798 2.代码思路 入参…

Java File与IO流学习笔记

内存中存放的都是临时数据,但是在断电或者程序终止时都会丢失 而硬盘则可以长久存储数据,即使断电,程序终止,也不会丢失 File File是java.io.包下的类,File类的对象,用于代表当前操作系统的文件(可以是文…

通讯协议学习之路:IrDA协议协议理论

通讯协议之路主要分为两部分,第一部分从理论上面讲解各类协议的通讯原理以及通讯格式,第二部分从具体运用上讲解各类通讯协议的具体应用方法。 后续文章会同时发表在个人博客(jason1016.club)、CSDN;视频会发布在bilibili(UID:399951374) 序、…

【CSS】全局滚动条样式设置

直接在 App.vue 全局文件下设置滚动条样式: ::-webkit-scrollbar {width: 5px;position: absolute; } ::-webkit-scrollbar-thumb {background: #1890ff; } ::-webkit-scrollbar-track {background: #ddd; }

Python-Python高阶技巧:闭包、装饰器、设计模式、多线程、网络编程、正则表达式、递归

版本说明 当前版本号[20231018]。 版本修改说明20231018初版 目录 文章目录 版本说明目录Python高阶技巧闭包简单闭包修改外部函数变量的值实现以下atm取钱的闭包实现了闭包注意事项 装饰器装饰器的一般写法(闭包写法)装饰器的语法糖写法 设计模式单例…

STM32F4_网络通信(网口)

前言 STM32F4开发板上自带了网口。可以通过开发板自带的网口和LWIP实现:TCP服务器、TCP客服端、UDP以及WEB服务器等四个功能。 1. STM32 以太网简介 STM32F4 芯片自带以太网模块,该模块包括带有专用 DMA 控制器的 MAC 802.3(介质访问控制&am…

计算机算法分析与设计(12)---贪心算法(最优装载问题和哈夫曼编码问题)

文章目录 一、最优装载问题1.1 问题表述1.2 代码编写 二、哈夫曼编码2.1 哈夫曼编码概述2.2 前缀码2.3 问题描述2.4 代码思路2.5 代码编写 一、最优装载问题 1.1 问题表述 1. 有一批集装箱要装上一艘载重量为 c c c 的轮船,已知集装箱 i ( 1 ≤ i ≤ n ) i(1≤i≤…

【Matlab】三维绘图函数汇总

本文用于汇总 Matlab 中的三维绘图函数。plot3() 函数用于绘制用参数方程表示的三维曲线。ezplot3() 函数用于三维曲线的符号绘图,需要用参数方程表示。mesh() 函数用于绘制三维曲面网格。surf() 函数用于绘制三维空间曲面。 目录 1. plot3() 2. ezplot3() 3. me…

R文件详细介绍、瘦身方案和原理

文章目录 1. 背景2. R文件介绍2.1 R文件概念2.1.1 标识符是怎么与资源联系起来的? 2.2 R文件内容2.3 library module和aar的R文件内容生成规则2.4 是谁生成的R文件?2.5 打包之后的R文件2.6 R文件为啥大?这么多? 3. 为什么R文件可以…

【Objective-C】浅析Block及其捕获机制

目录 Block的基本使用Block的声明Block的实现Block的调用 Block作为形参使用Block作为属性使用给Block起别名Block的copy Block的捕获机制auto类型的局部变量__block浅析static类型的局部变量全局变量 其他问题 Block的基本使用 什么是Block? Block (块…

2.2.C++项目:网络版五子棋对战之数据管理模块的设计

文章目录 一、数据管理模块实现(一)功能 二、设计(一)数据库设计(二)创建user_table类 一、数据管理模块实现 (一)功能 数据管理模块主要负责对于数据库中数据进行统一的增删改查管…

【快速解决】在vs2022中配置SFML图形库

目录 SFML 图形库的安装步骤如下: 1.下载 SFML 在 SFML 的官网(下载对应操作系统版本的 SFML)。​编辑 2.解压文件 将下载的压缩包解压至任意位置,得到类似如下的目录结构: 3.配置 VS 打开 Visual Studio&#xff…

人工智能、机器学习、深度学习的区别

人工智能涵盖范围最广,它包含了机器学习;而机器学习是人工智能的重要研究内容,它又包含了深度学习。 人工智能(AI) 人工智能是一门以计算机科学为基础,融合了数学、神经学、心理学、控制学等多个科目的交…

深度学习_3_实战_房价预测

梯度 实战 代码: # %matplotlib inline import random import torch import matplotlib.pyplot as plt # from d21 import torch as d21def synthetic_data(w, b, num_examples):"""生成 Y XW b 噪声。"""X torch.normal(0,…