深度学习_3_实战_房价预测

梯度
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

实战

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

代码:

# %matplotlib inline
import random
import torch
import matplotlib.pyplot as plt
# from d21 import torch as d21def synthetic_data(w, b, num_examples):"""生成 Y = XW + b + 噪声。"""X = torch.normal(0, 1, (num_examples, len(w)))# 均值为0,方差为1的随机数,n个样本,列数为w的长度y = torch.matmul(X, w) + b # y = x * w + by += torch.normal(0, 0.01, y.shape) # 加入随机噪音,均值为0.。形状与y的一样return X, y.reshape((-1, 1))# x, y做成列向量返回true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
#读取小批量,输出batch_size的小批量,随机选取
def data_iter(batch_size, features, labels):num_examples = len(features)indices = list(range(num_examples))#转成listrandom.shuffle(indices)#打乱for i in range(0, num_examples, batch_size):#batch_indices = torch.tensor(indices[i:min(i + batch_size, num_examples)])#取yield features[batch_indices], labels[batch_indices]#不断返回# #print(features)
# #print(labels)
#
#
batch_size = 10
#
# for x, y in data_iter(batch_size, features,labels):
#      print(x, '\n', y)
#      break
# # 提取第一列特征作为x轴,第二列特征作为y轴
# x = features[:, 1].detach().numpy() #将特征和标签转换为NumPy数组,以便能够在Matplotlib中使用。
# y = labels.detach().numpy()
#
# # 绘制散点图
# plt.scatter(x, y, 1)
# plt.xlabel('Feature 1')
# plt.ylabel('Feature 2')
# plt.title('Synthetic Data')
# plt.show()
#
# #定义初始化模型w = torch.normal(0, 0.01, size=(2, 1), requires_grad=True)
b = torch.zeros(1, requires_grad = True)def linreg(x, w, b):return torch.matmul(x, w) + b#定义损失函数def squared_loss(y_hat, y):return (y_hat - y.reshape(y_hat.shape))**2 / 2 #弄成一样的形状# 定义优化算法
def sgd(params, lr, batch_size):"""小批量随梯度下降"""with torch.no_grad():#节省内存和计算资源。for param in params:param -= lr * param.grad / batch_sizeparam.grad.zero_()#用于清空张量param的梯度信息。print("训练函数")lr = 0.03 #学习率
num_ecopchs = 300 #数据扫描三遍
net = linreg #指定模型
loss = squared_loss #损失for epoch in range(num_ecopchs):#扫描数据for x, y in data_iter(batch_size, features, labels): #拿出x, yl = loss(net(x, w, b), y)#求损失,预测net,真实yl.sum().backward()#算梯度sgd([w, b], lr, batch_size)#使用参数的梯度更新参数with torch.no_grad():train_l = loss(net(features, w, b), labels)print(f'epoch {epoch + 1},loss {float(train_l.mean()):f}')

运行效果:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/167060.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java EE-servlet API 三种主要的类

上述的代码如下: import javax.servlet.ServletException; import javax.servlet.annotation.WebServlet; import javax.servlet.http.HttpServlet; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; import java.i…

使用CMake构建一个简单的C++项目

文章目录 一. 构建一个简单的项目二. 构建过程1. 创建程序源文件2. 编写CMakeList.txt文件3. 构建项目并编译源代码 附件 一. 构建一个简单的项目 最基本的CMake项目是从单个源代码文件构建的可执行文件。对于像这样的简单项目,只需要一个包含三个命令的CMakeLists…

查看当前cmake版本支持哪些版本的Visual Studio

不同版本的的cmake对Visual Studio的版本支持不同,以下图示展示了如何查看当前安装的cmake支持哪些版本的Visual Studio。 1.打开cmake-gui 2.查看cmake支持哪些版本的Visual Studio

django基于Python的房价预测系统+爬虫+大屏可视化分析

欢迎大家点赞、收藏、关注、评论 文章目录 前言一、项目介绍二、开发环境三、功能需求分析1 数据采集功能设计2数据管理功能设计3爬虫功能需求分析4 数据可视化功能需求分析数据库表的设计 四、核心代码五、效果图六、文章目录 前言 房价是一个国家经济水平的重要体现&#xff…

正点原子嵌入式linux驱动开发——Linux并发与竞争

Linux是一个多任务操作系统,肯定会存在多个任务共同操作同一段内存或者设备的情况,多个任务甚至中断都能访问的资源叫做共享资源。在驱动开发中要注意对共享资源的保护,也就是要处理对共享资源的并发访问。在Linux驱动编写过程中对于并发控制…

2、Kafka 生产者

3.1 生产者消息发送流程 3.1.1 发送原理 在消息发送的过程中,涉及到了两个线程——main 线程和 Sender 线程。在 main 线程 中创建了一个双端队列 RecordAccumulator。main 线程将消息发送给 RecordAccumulator, Sender 线程不断从 RecordAccumulator 中…

为什么短信验证码要设置有效期?

安全性:验证码的主要目的是为了验证用户的身份,防止恶意或未经授权的访问。如果验证码没有有效期,恶意用户或攻击者可以获取验证码后无限期地尝试使用它。通过设置有效期,可以限制验证码的生命周期,提高系统的安全性。…

跳跃游戏Ⅱ-----题解报告

题目:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 与Ⅰ不同的是,这次要求找出最小的跳跃次数。思路也很简单,在每一次跳跃之后都更新最远的跳跃距离。 举个列子: 输入:2,3,1,1,4 第一次…

看我为了水作业速通C++!

和java不太一样的一样的标题打个*&#xff0c;方便对比 基本架构* #include<iostream> using namespace std; int main() { system("pause"); return 0; } 打印* cout << "需要打印的内容" <<endl endl 是一个特殊的输出流控…

【Java基础面试三十八】、请介绍Java的异常接口

文章底部有个人公众号&#xff1a;热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享&#xff1f; 踩过的坑没必要让别人在再踩&#xff0c;自己复盘也能加深记忆。利己利人、所谓双赢。 面试官&#xff1a;请介绍Java的异常接口 …

JAVA高级教程-Java Map(6)

目录 6、Map的使用 6、Map的使用 package Map01;import java.util.HashMap; import java.util.Map; import java.util.Set;/*** Map接口的使用*/ public class Demo01_HashMap {public static void main(String[] args) {Map<String,String> mapnew HashMap<>();ma…

Hadoop3教程(三十一):(生产调优篇)异构存储

文章目录 &#xff08;157&#xff09;异构存储概述概述异构存储的shell操作 &#xff08;158&#xff09;异构存储案例实操参考文献 &#xff08;157&#xff09;异构存储概述 概述 异构存储&#xff0c;也叫做冷热数据分离。其中&#xff0c;经常使用的数据被叫做是热数据&…

Android12之DRM架构(一)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

JVM——JVM概述以及双亲委派机制

JVM探究 请你谈谈你对JVM的理解&#xff1f;Java8虚拟机和之前的有什么变化更新&#xff1f;什么是OOM&#xff0c;什么是栈溢出StackOverFlowError&#xff1f;怎么分析&#xff1f;JVM的常用调优参数有哪些&#xff1f;内存快照如何抓取&#xff1f;怎么分析Dump文件&#x…

【Java基础面试三十五】、谈谈你对面向接口编程的理解

文章底部有个人公众号&#xff1a;热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享&#xff1f; 踩过的坑没必要让别人在再踩&#xff0c;自己复盘也能加深记忆。利己利人、所谓双赢。 面试官&#xff1a;谈谈你对面向接口编程的…

2022年亚太杯APMCM数学建模大赛B题高速列车的优化设计求解全过程文档及程序

2022年亚太杯APMCM数学建模大赛 B题 高速列车的优化设计 原题再现&#xff1a; 2022年4月12日&#xff0c;中国高铁复兴号CR450动车组在开放线上成功实现单车时速435公里&#xff0c;相对速度870公里&#xff0c;创造了高铁动车组列车穿越开放线和隧道速度的世界纪录。新一代…

npm常用命令与操作篇

npm简介 npm是什么 npm 的英文是&#xff0c;node package manager&#xff0c;是 node 的包管理工具 为什么需要npm 类比建造汽车一样&#xff0c;如果发动机、车身、轮胎、玻璃等等都自己做的话&#xff0c;几十年也做不完。但是如果有不同的厂商&#xff0c;已经帮我们把…

HTTP 协议的基本格式(部分)

要想了解HTTP&#xff0c;得先知道什么是HTTP&#xff0c;那么HTTP是什么呢&#xff1f;HTTP (全称为 "超文本传输协议") 是一种应用非常广泛的 应用层协议。那什么是超文本呢&#xff1f;那就是除了文本&#xff0c;还有图片&#xff0c;声音&#xff0c;视频等。 …

openHarmony UI开发

常用组件和布局方式 组件 ArkUI有丰富的内置组件&#xff0c;包括文本、按钮、图片、进度条、输入框、单选框、多选框等。和布局一样&#xff0c;我们也可以将基础组件组合起来&#xff0c;形成自定义组件。 按钮&#xff1a; Button(Ok, { type: ButtonType.Normal, stateEf…

python 之 矩阵相关操作

文章目录 1. **创建矩阵**&#xff1a;2. **矩阵加法**&#xff1a;3. **矩阵乘法**&#xff1a;4. **矩阵转置**&#xff1a;5. **元素级操作**&#xff1a;6. **汇总统计**&#xff1a;7. **逻辑操作**&#xff1a; 理解你的需求&#xff0c;我将为每个功能写一个单独的代码块…