详细介绍如何使用Ipopt非线性求解器求解带约束的最优化问题

   本文中将详细介绍如何使用Ipopt非线性求解器求解带约束的最优化问题,结合给出的带约束的最优化问题示例,给出相应的完整的C++程序,并给出详细的解释和注释,以及编译规则等

   一、Ipopt库的安装和测试

   本部分内容在之前的文章《Ubuntu20.04安装Ipopt的流程介绍及报错解决方法(亲测简单有效)》中已经详细介绍过了,链接如下:

   https://blog.csdn.net/qq_44339029/article/details/133679131


   二、使用Ipopt非线性求解器求解带约束的最优化问题的程序示例


   0、明确要求解的带约束的最优化问题

   首先,我们来看一个简单的带约束的最优化问题,其包含两个不等式约束和1个等式约束,详情如下:

   f = ( x 1 − 10.24 ) 2 + 5.21 x 2 + 9.9 ( x 3 − x 4 ) 2 f=(x_1-10.24)^2+5.21x_2+9.9(x_3-x_4)^2 f=(x110.24)2+5.21x2+9.9(x3x4)2

   g 1 : 2 ≤ x 3 − x 4 ≤ 10 g 2 : 2.99 ≤ x 2 ≤ 100 g 3 : x 2 = x 4 \begin{aligned}g_1 & : & 2\leq x_3-x_4\leq10\\ g_2 & : & 2.99\leq x_2\leq100\\ g_3 & : & x_2=x_4\end{aligned} g1g2g3:::2x3x4102.99x2100x2=x4

   其中 x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 x 4 x_4 x4的取值范围均为0~100,易知使得上述目标函数 f f f取值最小的解为:10.24、2.99、4.99、2.99。

   下面介绍,如何编程使用Ipopt非线性求解器求解该问题


   1. 引入头文件和命名空间:

#include <iostream>
#include <cassert>
#include <cppad/ipopt/solve.hpp>
using CppAD::AD;

   引入必要的C++头文件,包括iostream(用于输入输出),cassert(用于C风格的assert)以及cppad/ipopt/solve.hpp(用于Ipopt求解器和CppAD库的接口)。然后在一个匿名的命名空间中引入了AD类型,这是CppAD库中用于自动微分(Automatic Differentiation)的数据类型。

   2. 定义FG_eval类:

namespace {class FG_eval {public:typedef CPPAD_TESTVECTOR(AD<double>) ADvector;void operator()(ADvector& fg, const ADvector& x) {// ...}};
}

   在匿名命名空间中,定义一个FG_eval类,用于计算目标函数和约束条件的值。这个类也是调用使用CppAD和Ipopt库所需的最重要的接口,这个类中的operator()函数是用于计算问题的目标函数和约束条件的核心部分。它接受两个向量:fg用于存储目标函数值和约束条件值,x用于存储优化变量。

   3. 定义operator()函数:

   接下来,我们根据第0步中明确的目标函数及约束条件来编写核心的operator函数,示例如下:

void FG_eval::operator()(ADvector& fg, const ADvector& x) {assert(fg.size() == 4);assert(x.size() == 4);AD<double> x1 = x[0];AD<double> x2 = x[1];AD<double> x3 = x[2];AD<double> x4 = x[3];fg[0] = (x1 - 10.24) * (x1 - 10.24) + 5.21 * x2 + 9.9 * (x3 - x4) * (x3 - x4);fg[1] = x3 - x4;fg[2] = x2;fg[3] = x2 - x4;// 打印计算结果std::cout << "fg[0]:" << fg[0] << std::endl;std::cout << "fg[1]:" << fg[1] << std::endl;std::cout << "fg[2]:" << fg[2] << std::endl;std::cout << "fg[3]:" << fg[3] << std::endl;
}

   operator()函数接受fgx向量,然后根据问题的定义计算目标函数和约束条件的值,并将它们存储在fg向量中。同时,它也打印出这些值, 其中fg[0]即为目标函数表达式、fg[1]、fg[2]、fg[3]中依次对应了第0步中设定的三个约束,不等式约束直接写即可,等式约束的等式左右两边同时减去右边的项,使等式右边变为0。

   4. 定义主函数get_started(该函数名字可任取):

   定义一个主函数,设定自变量的初始值,以及自变量和约束的上下限,设定和提供调用Ipopt非线性求解器求解所需要的变量,然后调用求解器进行求解,并进行验证等操作,程序示例如下:

bool get_started(void)
{	bool ok = true;size_t i;typedef CPPAD_TESTVECTOR( double ) Dvector;size_t nx = 4;size_t ng = 3;Dvector xi(nx);xi[0] = 10.0;xi[1] = 5.0;xi[2] = 5.0;xi[3] = 100.0;Dvector xl(nx), xu(nx);for(i = 0; i < nx; i++){	xl[i] = 0;xu[i] = 100;}Dvector gl(ng), gu(ng);gl[0] = 2;     gu[0] = 10;gl[1] = 2.99;  gu[1] = 100;gl[2] = 0;     gu[2] = 0;FG_eval fg_eval;std::string options;options += "Integer print_level  0\n";options += "String  sb           yes\n";options += "Integer max_iter     10\n";options += "Numeric tol          1e-6\n";options += "String  derivative_test            second-order\n";options += "Numeric point_perturbation_radius  0.\n";CppAD::ipopt::solve_result<Dvector> solution;CppAD::ipopt::solve<Dvector, FG_eval>(options, xi, xl, xu, gl, gu, fg_eval, solution);ok &= solution.status == CppAD::ipopt::solve_result<Dvector>::success;double check_x[]  = { 10.24, 2.99, 4.99, 2.99 }; double rel_tol    = 1e-6;  // relative tolerancedouble abs_tol    = 1e-6;  // absolute tolerancefor(i = 0; i < nx; i++){		ok &= CppAD::NearEqual(check_x[i],  solution.x[i],   rel_tol, abs_tol     ); std::cout << "x[" << i << "] = " << solution.x[i] << std::endl;}return ok;
}

   以下是程序的详细解释:

   (1). bool get_started(void):程序逻辑流程的主要函数,get_started函数定义了问题的基本参数,如变量数量、约束数量、变量的初始值,以及变量和约束的上下界。然后,它创建了一个FG_eval对象来计算目标函数和约束条件,设置了Ipopt求解器的选项,并最终调用求解器来解决问题。

   (2). bool ok = true;:定义一个布尔变量 ok,用于表示问题是否成功求解。一开始将其初始化为 true

   (3). 类型别名 Dvector:通过 typedef CPPAD_TESTVECTOR(double) Dvector; 定义了一个 Dvector 类型,它是CppAD库中的向量类型,用于存储双精度(double)数值。

   (4). size_t nx = 4;:定义一个 size_t 类型的变量 nx,表示问题中独立变量(自变量)的数量,即问题的变量维度。在这个示例中,有4个独立的自变量。

   (5). size_t ng = 3;:定义一个 size_t 类型的变量 ng,表示问题中的约束数量,即约束的维度。在这个示例中,有3个约束条件。

   (6). 创建 Dvector 向量 xi:用于存储问题的独立变量(自变量)。这个向量有4个元素,对应于4个自变量。

   (7). 设置初始猜测值 xi:为 xi 向量中的每个元素分别赋初值,为检验算法性能,这里设定了一个较差的初始值。

   - `xi[0] = 10.0;`- `xi[1] = 5.0;`- `xi[2] = 5.0;`- `xi[3] = 100.0;`

   (8). 定义变量和约束条件的上下界:

   - 创建 Dvector 向量 xlxu,它们分别表示变量的下界和上界,并根据第0步中的设定的自变量的取值范围0~100进行设定

   - 创建 Dvector 向量 glgu,它们分别表示约束条件的下界和上界,并根据第0步中,三个约束的进行设定,对于前两个不等式约束,直接设定即可,第三个等式约束,即 x 2 − x 4 = 0 x_2-x_4=0 x2x4=0,因此,上下限均设为0即可。

   (9). 创建 FG_eval 类的对象 fg_evalFG_eval 即我们第二步中设定的类,用于计算目标函数和约束条件的值。这是问题的目标函数和约束条件的具体定义。

   (10). 创建字符串 options:用于存储Ipopt求解器的选项,包括设置输出级别、最大迭代次数、收敛容差等,详情如下所示:

    - `options += "Integer print_level  0\n";`:将输出级别设置为0,以关闭求解器的详细输出,只打印关键信息。- `options += "String  sb           yes\n";`:使用平衡约束优化方法。- `options += "Integer max_iter     10\n";`:设置最大迭代次数为10次。- `options += "Numeric tol          1e-6\n";`:设置迭代停止的收敛容差为1e-6- `options += "String  derivative_test            second-order\n";`:启用二阶导数测试,用于检查目标函数和约束条件的导数是否正确。- `options += "Numeric point_perturbation_radius  0.\n";`:将随机扰动的半径设置为0,表示不使用扰动进行数值近似求导。

   (11). 创建 CppAD::ipopt::solve_result<Dvector> solution;:用于存储求解结果的对象。

   (12). 调用 CppAD::ipopt::solve 函数:使用Ipopt求解器解决非线性规划问题。传递了问题选项、独立变量的初始值、变量的上下界、约束条件的上下界、问题的定义(fg_eval 对象),以及存储结果的 solution 对象。

   (13). 检查求解器的状态:如果状态为成功(success),则将 ok 变量保持为真,表示问题已成功求解。

   注:下面的第(14)~(16)部分,是为了验证求解是否正确,为非必要步骤

   (14) 创建 check_x 数组:包含问题的精确解。这些值是问题的已知精确解。

   (15). 设置相对容差和绝对容差的阈值:这些值用于控制验证解的精度。

   (16). 遍历问题中的每个变量,进行解的验证:使用 CppAD::NearEqual 函数来比较问题的解与精确解是否足够接近。如果它们的差距在相对容差和绝对容差的范围内,ok 变量将保持为真,并打印每个变量的解。

   (17).返回 ok 变量:表示问题是否成功求解。

  

   5. C++主函数main

int main(void) {std::cout << "===== Ipopt with CppAD Testing =====" << std::endl;bool result = get_started();std::cout << "Final checking: " << result << std::endl;
}

   main函数是程序的入口点,它简单地调用get_started函数来执行非线性规划问题的求解,并打印结果。


   6. ☆☆☆带详细注释的完整程序`☆☆☆

# include <iostream>
// C style asserts
# include <cassert>
// 包含Ipopt求解器头文件
# include <cppad/ipopt/solve.hpp>// 在一个匿名的命名空间中,引入了一个AD类型,它是CppAD库中用于自动微分(Automatic Differentiation)的数据类型。AD类型可以用来表示变量和函数,使其具备微分能力。
namespace {using CppAD::AD;class FG_eval {public:typedef CPPAD_TESTVECTOR( AD<double> ) ADvector;// fg: function that evaluates the objective and constraints using the syntax// 定义一个函数运算符,用于计算目标函数和约束条件的值void operator()(ADvector& fg, const ADvector& x){	//使用assert来设定fg和x的大小,以确保它们与问题的维度匹配//fg 向量用于存储目标函数值和约束条件值,x向量用于存储优化变量assert( fg.size() == 4 );assert( x.size()  == 4 );//  将 x 中的优化变量分配给 AD 类型的变量 x1 到 x4。这是在使用C++ Algorithmic Differentiation(CppAD)时定义问题中的独立变量的方式。AD<double> x1 = x[0];AD<double> x2 = x[1];AD<double> x3 = x[2];AD<double> x4 = x[3];// 计算目标函数的值,将其存储在 fg[0] 中。这里使用了 x1 到 x4 这些 AD 类型的变量,这意味着这个表达式将被自动微分,以便后续的梯度计算。fg[0] = (x1-10.24) * (x1-10.24) + 5.21*x2 + 9.9*(x3-x4)*(x3-x4);//  分别计算三个约束条件的值,并将它们存储在 fg[1] 和 fg[2]、 fg[3]中。fg[1] = x3-x4;fg[2] = x2;fg[3] = x2-x4;//std::cout << "fg[0]:" << fg[0]<< std::endl;std::cout << "fg[1]:" << fg[1]<< std::endl;std::cout << "fg[2]:" << fg[2]<< std::endl;std::cout << "fg[3]:" << fg[3]<< std::endl;return;}};
}// 该函数用于设置和解决非线性规划问题
// 它首先定义了问题的一些基本参数,如变量数量、约束数量、变量的初始值、变量和约束的上下界等
// 然后创建一个FG_eval对象用于计算目标函数和约束条件
// 最后,使用CppAD::ipopt::solve函数来解决问题,并将结果存储在solution中
bool get_started(void)
{	bool ok = true;size_t i;// 创建了一个类型别名 Dvector,它是CppAD库中的一个向量类型,用于存储双精度(double)数值。这个向量类型是CppAD库的一部分,通常用于存储问题的变量、约束和其他向量。typedef CPPAD_TESTVECTOR( double ) Dvector;// 声明了一个 size_t 类型的变量 nx,它表示问题中独立变量(自变量)的数量,也就是问题的变量维度。在这个示例中,有4个独立变量,因此 nx 的值为4。size_t nx = 4;// 声明了一个 size_t 类型的变量 ng,它表示问题中的约束数量,也就是约束的维度。在这个示例中,有3个约束条件,因此 ng 的值为3。size_t ng = 3;//  创建了一个名为 xi 的 Dvector 类型的向量,用于存储问题的独立变量(自变量)。这个向量有4个元素,对应于4个自变量。Dvector xi(nx);// 分别为这4个独立变量设置了初始值。这些值将用作问题的初始猜测,作为非线性规划求解器的起点。xi[0] = 10.0;xi[1] = 5.0;xi[2] = 5.0;xi[3] = 100.0;//设置问题的变量(自变量)和约束条件的上下界(限制条件)。Dvector xl(nx), xu(nx);for(i = 0; i < nx; i++){	xl[i] = 0;xu[i] = 100;}Dvector gl(ng), gu(ng);gl[0] = 2;     gu[0] = 10;gl[1] = 2.99;  gu[1] = 100;gl[2] = 0;     gu[2] = 0;// 创建了 FG_eval 类的对象 fg_eval,用于计算目标函数和约束条件的值。这是问题的目标函数和约束条件的具体定义。FG_eval fg_eval;// 创建了一个字符串 options,用于存储Ipopt求解器的选项。std::string options;// 设置了求解器选项,将 print_level 参数设置为0,以关闭求解器的输出,即不会在控制台打印详细信息,只打印关键信息。options += "Integer print_level  0\n";//  将 sb 参数设置为 "yes",这表示使用平衡约束优化方法。options += "String  sb           yes\n";// 设置最大迭代次数为10次。options += "Integer max_iter     10\n";// approximate accuracy in first order necessary conditions;// see Mathematical Programming, Volume 106, Number 1,// Pages 25-57, Equation (6)// 设置迭代停止的收敛容差为1e-6。options += "Numeric tol          1e-6\n";//  启用了二阶导数测试,用于检查目标函数和约束条件的导数是否正确。options += "String  derivative_test            second-order\n";// maximum amount of random pertubation; e.g.,// when evaluation finite diff// 将随机扰动的半径设置为0,表示不使用扰动进行数值近似求导。options += "Numeric point_perturbation_radius  0.\n";// 创建了一个用于存储求解结果的对象 solution,CppAD::ipopt::solve_result<Dvector> solution;// 调用了 CppAD::ipopt::solve 函数,用于解决非线性规划问题。它传递了问题选项、独立变量的初始值、变量的上下界、约束条件的上下界、问题的定义(fg_eval 对象),以及存储结果的 solution 对象。CppAD::ipopt::solve<Dvector, FG_eval>(options, xi, xl, xu, gl, gu, fg_eval, solution);//检查求解器的状态,如果状态为成功(success),则 ok 变量将保持为真。这表示问题已成功求解。ok &= solution.status == CppAD::ipopt::solve_result<Dvector>::success;// 创建一个名为 check_x 的数组,其中包含了问题的精确解。这个数组中的值是问题的已知精确解。double check_x[]  = { 10.24, 2.99, 4.99, 2.99 }; // 设置了相对容差和绝对容差的阈值。这些值用于控制验证解的精度。double rel_tol    = 1e-6;  // relative tolerancedouble abs_tol    = 1e-6;  // absolute tolerance// 遍历问题中的每个变量,进行解的验证。for(i = 0; i < nx; i++){	//使用 CppAD::NearEqual 函数来比较问题的解 solution.x[i] 与精确解 check_x[i] 是否足够接近。如果它们的差距在相对容差和绝对容差的范围内,ok 变量将保持为真。ok &= CppAD::NearEqual(check_x[i],  solution.x[i],   rel_tol, abs_tol     ); // 使用 std::cout 打印每个变量的解,以便在控制台上查看结果。std::cout << "x[" << i << "] = " << solution.x[i] << std::endl;}return ok;
}// main program that runs all the tests
int main(void)
{	std::cout << "===== Ipopt with CppAD Testing =====" << std::endl;bool result = get_started();std::cout << "Final checking: " << result << std::endl;
}
// END C++

   三、编译验证

   将上面第二部分,第6步中给出的完整的程序,保存为CppAD_Ipopt.cpp,然后在同一目录下,创建一个名为CMakeLists.txt的文件,接下来,我们需要在CMakeLists.txt文件中,编写编译规则,如下所示:

# 设置CMake的最低版本要求
cmake_minimum_required(VERSION 3.5)
# 项目名称
project(CppadIpoptDemo)
# 寻找Ipopt包(确保你已经安装了Ipopt和CppAD)
# find_package(Ipopt REQUIRED)
# 设置可执行文件的名称和源文件
add_executable(cppad_ipopt_demo CppAD_Ipopt.cpp)
# 包含Ipopt的头文件
# target_include_directories(cppad_ipopt_demo PRIVATE ${IPOPT_INCLUDE_DIRS})
# 链接Ipopt库
# target_link_libraries(cppad_ipopt_demo ${IPOPT_LIBRARIES})
TARGET_LINK_LIBRARIES(cppad_ipopt_demo ipopt)

   保存,并关掉CMakeLists.txt文件,接下来就利用该文件对CppAD_Ipopt.cpp进行编译,在该目录下空白处,右键打开终端,依次输入以下四条语句

mkdir build
cd build
cmake ..
make

   以上编译结束后,在build文件夹下,生成了可执行文件cppad_ipopt_demo,如下图所示

   在当前目录下,右键打开终端,输入以下指令运行该文件

./cppad_ipopt_demo

   运行结果如下,可以发现即使在给定的初始解很差的情况下,Ipopt非线性求解器依然能够求解出第二部分第0部步中设定的带约束优化问题的最优解。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/167544.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在Windows下Edge浏览器OA发起流程问题

在Edge浏览器中发起流程 如上图所示&#xff0c;不能正常打开Excel&#xff0c;自动将Excel表格转为了PDF 怎么处理&#xff1f;还得使用IE浏览器来访问&#xff0c;但打开IE后又自动跳转到Edge&#xff0c;根本就不给使用&#xff0c;在Edge下使用IE模式也解决不了这个问题。…

【超级基础版】十进制与二进制的转换

目录 一、为什么是二进制&#xff1f; 二、二进制的加法和乘法 三、二进制向十进制转换 四、十进制整数向二进制转换 五、十进制小数向二进制小数的转换 六、八进制和十六进制的引入 一、为什么是二进制&#xff1f; 我们知道电脑的数据本质上是0和1&#xff0c;就是我们…

蓝桥杯中级题目之组合(c++)

系列文章目录 数位递增数_睡觉觉觉得的博客-CSDN博客拉线开关。_睡觉觉觉得的博客-CSDN博客蓝桥杯中级题目之数字组合&#xff08;c&#xff09;_睡觉觉觉得的博客-CSDN博客 文章目录 系列文章目录前言一、个人名片二、描述三、输入输出以及代码示例1.输入2.输出3.代码示例 总…

ArmSoM-W3之RK3588硬编解码MPP环境配置

1. 简介 瑞芯微提供的媒体处理软件平台&#xff08;Media Process Platform&#xff0c;简称 MPP&#xff09;是适用于瑞芯微芯片系列的 通用媒体处理软件平台。该平台对应用软件屏蔽了芯片相关的复杂底层处理&#xff0c;其目的是为了屏蔽不 同芯片的差异&#xff0c;为使用者…

电脑技巧:笔记本电脑网络不显示wifi列表解决办法

目录 1.WiFi功能被关闭 2.启用了飞行模式 3.WLAN连接被禁用 4.无线网卡驱动未安装 5.WLAN AutoConfig服务未启动 我的笔记本电脑连接wifi时&#xff0c;结果wifi列表中不显示任何的网络信息&#xff0c;这是怎么回事&#xff1f;要如何解决&#xff1f; 答&#xff1a;笔…

kaggle新赛:UBC卵巢癌亚型分类和异常检测大赛【图像分类】

赛题名称&#xff1a;UBC Ovarian Cancer Subtype Classification and Outlier Detection (UBC-OCEAN) 赛题链接&#xff1a;https://www.kaggle.com/competitions/UBC-OCEAN 赛题背景 卵巢癌是女性生殖系统最致命的癌症。目前&#xff0c;卵巢癌诊断依赖病理学家评估亚型。…

卷积神经网络CNN学习笔记-MaxPool2D函数解析

目录 1.函数签名:2.学习中的疑问3.代码 1.函数签名: torch.nn.MaxPool2d(kernel_size, strideNone, padding0, dilation1, return_indicesFalse, ceil_modeFalse) 2.学习中的疑问 Q:使用MaxPool2D池化时,当卷积核移动到某位置,该卷积核覆盖区域超过了输入尺寸时,MaxPool2D会…

【计算机网络笔记】TCP/IP参考模型基本概念,包括五层参考模型

系列文章目录 什么是计算机网络&#xff1f; 什么是网络协议&#xff1f; 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能&#xff08;1&#xff09;——速率、带宽、延迟 计算机网络性能&#xff08;2&#xff09;…

EC11编码器编码使用

文章目录 前要原理脉冲与定位功能硬件设计 编程轮询模式定时器Encoder模式 结束语 前要 关于EC11编码器的了解可以参考两篇文章&#xff0c;比较详细&#xff0c;在此就不多介绍了&#xff1a; 一篇文章带你了解——EC11编码器&#xff08;关于硬件、原理图、上下拉等都有讲&…

Vue3踩坑指南

vue.config.ts不起作用 关于项目 项目使用的还是vue-cli搭建的&#xff0c;底层还是webpack&#xff0c;没有使用新的vite搭建。 踩坑1&#xff1a;vue.config.ts不起作用 我本着既然是vue3 ts的项目&#xff0c;那么为了规范&#xff0c;项目中所有的js文件都得替换成ts文…

idea的debug调试

目录 断点条件设置(condition) 断点表达式(evaluate expression) 断点回退(reset frame) 断点条件设置(condition) 条件断点&#xff0c;一般是满足我们设置的某个条件时&#xff0c;debug断点才会生效。这种条件断点设置&#xff0c;我们一般用在多重循环中。 这儿我们以li…

vue3脚手架搭建

一.安装 vue3.0 脚手架 如果之前安装了2.0的脚手架&#xff0c;要先卸载掉&#xff0c;输入&#xff1a; npm uninstall vue-cli -g 进行全局卸载 1.安装node.js&#xff08;npm&#xff09; node.js&#xff1a;简单的说 Node.js 就是运行在服务端的 JavaScript。Node.js 是…

Windows 安装 Java

1. 安装 JDK 从 Oracle 的官网下载的 JDK&#xff0c;例如 JDK 21 双击下载得到的 msi 文件&#xff0c;开始安装 JDK 选择要安装的文件路径&#xff08;我一般都默认&#xff09;&#xff1a; 等待安装&#xff1a; 安装完成&#xff1a; 2. 验证是否安装成功 2.1. 打开 cmd…

antd vue 组件 使用下拉框的层级来显示后面的输入框

效果图&#xff1a; 代码&#xff1a; HTML: <dir><a-row><a-col :span"4"><a-form-model-item label"审批层级" ><a-selectplaceholder"请选择审批层级"v-model"form.PlatformPurchaseApproveLevel"cha…

Linux笔记之diff和vimdiff

Linux笔记之diff和vimdiff code review! 文章目录 Linux笔记之diff和vimdiff一.diff1.1.使用diff比较文件夹1.2.使用diff比较文件1.4.colordiff——带颜色输出差异 二.vimdiff2.1.vimdiff颜色差异2.2.vimfiff调整栏宽2.3.修改颜色变谈&#xff0c;使代码可以看清楚2.4.vimdif…

FreeRTOS深入教程(任务的引入及栈的作用)

文章目录 前言一、任务的引入二、深入理解C语言函数的调用1.ARM架构2.基础汇编指令3.函数运行流程分析 三.保存现场的几种情况1.函数调用2.中断处理3.任务切换 总结 前言 本篇文章开始带大家深入学习FreeRTOS&#xff0c;带大家学习什么是任务&#xff0c;并且深入学习栈的作用…

AWS SAA-C03考试知识点整理

S3&#xff1a; 不用于数据库功能 分类&#xff1a; S3 Standard &#xff1a;以便频繁访问 S3 Standard-IA 或 S3 One Zone-IA &#xff1a; 不经常访问的数据 Glacier&#xff1a; 最低的成本归档数据 S3 Intelligent-Tiering智能分层 &#xff1a;存储具有不断变化或未知访问…

使用按钮从 SAP 系统内打开 Excel 文件

了解如何通过 SAP 屏幕上创建的按钮打开所需的 Excel 文件。为了演示这一点&#xff0c;将指导您完成以下步骤。 使用 del 命令删除 SAP 上不必要的元素添加一个按钮&#xff0c;单击后打开弹出窗口创建一个函数来选择 excel 文件创建打开所需 excel 文件的函数 定制 登录 S…

231022|redis_demo

安装 https://github.com/tporadowski/redis https://github.com/redis/redis-py/ 解压后要先配置redis.windows.conf文件&#xff0c;里面有本地端口和密码设置 默认host:127.0.0.1 port:6379 打开命令行到redis文件夹下&#xff0c;redis-server.exe redis.windows.conf输入即…

C语言程序环境和预处理

大家好&#xff0c;我们今天来分享C语言程序环境和预处理方面的内容。 C语言程序的运行阶段 C语言程序的运行是把我们的test.c文件&#xff08;也就是我们通常所说的文本信息里面的代码&#xff09;通过翻译环境转化为test.exe文件&#xff08;这个就是可执行程序&#xff0c;但…