【论文阅读】(2023TPAMI)PCRLv2

目录

  • Abstract
  • Method
  • Method
    • nsU-Net中的特征金字塔
    • 多尺度像素恢复
    • 多尺度特征比较
    • 从多剪切到下剪切
    • 训练目标
  • 总结

Abstract

现有方法及其缺点:最近的SSL方法大多是对比学习方法,它的目标是通过比较不同图像视图来保留潜在表示中的不变合判别语义,然而它主要保留高级语义信息,不包含足够的局部信息,局部信息对医学图像分析很有用。
提出的解决方法:提出将像素级恢复任务纳入,以将更多像素级信息显示编码到高级语义信息中。讨论了尺度信息保留,提出的框架可以表述为在特征金字塔上的多任务优化问题。
效果很好。

Method

在这里插入图片描述
上面是动机插图。三层分别表示像素、尺度和语义。像素是图片的像素值,通过特征图重建生成(从特征图中恢复未损坏的输入,以保留像素级细节),特征是网络学习到的特征,语义信息是一维编码。这些在不同的尺度上进行像素恢复和特征比较(特征比较怎么做?)引入多尺度自监督潜在特征表示,以更好地迁移到下游任务。
贡献

  1. 从像素、语义和尺度三个方面统一了潜在特征中视觉信息的保存。在不同特征尺度上进行像素恢复和特征比较。
  2. 我们引入了非跳过U-Net(nsUNet)来构建特征金字塔。因防止跳跃连接踢狗学习的捷径,同时高级特征和低级特征直接组合不利于高级语义信息的提取。
  3. 受多剪切的启发,提出使用子剪切比较全局剪切块和局部剪切块。为了缓解 3D 空间中全局视图和局部视图之间互信息减少的问题,子裁剪限制了全局视图的 3D 最小边界框内的局部视图裁剪。
  4. 广泛全面的实验。
    PCRLv1证明了通过对比学习获得的不便和判别语义之外,还包含更多像素级语义信息的好处。对PCRLv1进行实质性修改。改进主要包括不限于:
    (i) 除了本地像素级和全局语义信息外,比例信息也保留在自监督视觉信息表示中。这证明可以提升在下游任务中的性能。
    (ii) PCRLv2将PCLv1的注意力像素级恢复和混合特征对比操作简化为简洁的多任务问题。
    (iii) 与PCELv1相比PCRLv2的引入了nsU-Net(非跳跃连接的U-Net)。
    usU-Net好处如下:
    a. nsU-Net的特征金字塔允许进行多尺度像素级上下文恢复和语义特征比较。像素、语义和比例的统一产生了更多可转移的视觉表示
    b. 它可以避免产生捷径解决方案,与典型跳跃连接相比,性能明显提高。
    (iv) 我们整合多剪切的想法到PCRLv2中。通过在全局视图中的3D最小边界框中随机剪切多个局部体积块来增加相互信息。
    (v) 实验效果好。

Method

在这里插入图片描述
PCRLv2的整体结构。提出nsU-Net。nsU-Net由5个特征缩放组成删除了跳跃连接,防止网络找到恢复上下文信息的捷径解决方法。在nsU-Net基础上,提出将像素级、语义和尺度信息的保存解耦为两个任务 a.多尺度像素恢复 b.多尺度特征比较。原理将像素细节和语义合并到不同比例的特征图中。在训练阶段,从特征金字塔中随机选择一个特征尺度,在尺度上进行像素恢复和特征比较,x是一批输入图像,t1和t2表示两个不同的全局增强,t1’和t2’表示连续的局部增强。
全局增强t1,t2;例如翻转和旋转,目标是从全局角度扭曲输入图像的语义。局部增强t1’,t2’表示局部像素级的转变,像是随机噪声和高斯滤波,目的是扰乱局部语义。最后增强后的图像传递给siamese网络取进行像素恢复和特征比较,利用经过t1和t2操作从x得到的x1和x2作为像素恢复任务的实际目标。
在特征金字塔上执行SSL以编码多尺度视觉表示。两个nsU-Net产生的特征图进行比较,这就是特征比较。每次随机抽取其中一个尺度,在所选尺度上进行像素恢复和特征比较,这是尺度方面的学习。

nsU-Net中的特征金字塔

在这里插入图片描述
上图是nsU-Net结构。彩色方块的是特征图。与之前的U-Net系列相比,nsUNet删除了跳过连接和关联的跳过特征映射,以防止像素恢复和特征比较任务的捷径解决方案。此外,nsUNet由五个级别的特征图(用不同的颜色表示)组成,其中进一步执行两个自我监督任务。
这里展示了特征提取的过程,特征图{F1,F2,F3,F4,F5}然后转发给后续任务相关头,分别并同时执行像素恢复和特征比较。

多尺度像素恢复

含义:旨在同时保留潜在视觉表示中的像素级和比例信息。
结构:下图(a)。
损失函数:每一个尺度都计算重建的2个特征图与x1,x2的MSE损失求和。
在这里插入图片描述
左边是像素恢复头的结构,右边是特征比较头的结构。没对特征图共享一个像素恢复头和特征比较头,不同的特征尺度使用不同的任务头。红线是比较。

多尺度特征比较

PCRLv2采用多尺度比较取代了PCRLv1中的混合对比策略。提出保留不同特征尺度的判别语义,这迫使模型保留多尺度自监督表示。
含义:旨在同时保留潜在视觉表示中的特征级和比例信息。
结构:上图(b)。
损失函数:我们将它们通过全局平均池化层和共享批量归一化层(如图4b所示)以获取一维表示vi就是红色双向箭头前面指到的地方,我们将 vi 转发给共享预测器 fP(·)预测器就是框起来的Predictor那部分,最后输出就是fp(vi)。下面那一个分支为 v i s v_i^s vis f p ( v i s ) fp(v_i^s) fp(vis)。损失函数就是负的二分之一vi和 f p ( v i s ) f_p(v_i^s) fp(vis)计算cos相似度加上 v i s v_i^s vis f p ( v i ) f_p(v_i) fp(vi)计算cos相似度。

从多剪切到下剪切

多裁剪 [5] 被认为是提高自然图像中 SSL 性能的有用策略,它通过从原始输入中采样多个标准分辨率裁剪和更多低分辨率裁剪来增加输入视图的数量。多裁剪背后的一个关键见解是捕获场景或对象的各个部分之间的关系,而低分辨率视图可确保计算成本的可控增加。
在医学图像中多裁剪在2D X射线数据中效果好,单在3D体积数据中不收敛,根源是有限的输入大小与三维空间中许多候选剪切体积之间的矛盾。们负担不起大尺寸的 3D 输入,因为使用 3D 深度模型处理它们通常会花费巨大的 GPU 内存。另一方面,如果我们过度减小 3D 输入的大小,采样视图将过于分散,无法保证模型捕获局部-全局关联。
下裁剪主要包括三个步骤:
(i)在IoU约束下随机裁剪两个广泛的全局视图;
(ii) 在裁剪的全局补丁上找到最小的 3D 边界框;
(iii) 在 3D 边界框中随机裁剪多个局部补丁。
下裁剪中有两个关键操作:IoU 对全局视图的约束和最小边界框内的局部补丁采样。在实践中,第一个操作通过确保大于固定阈值的大型补丁之间的重叠来保证全局-全局关联。第二个操作缓解了局部视图的分散问题,并帮助模型发现局部-全局关系。

训练目标

LTotal有三个术语:LR(g1,g2),LC(g1,g2)和∑ m∈{1,2} ∑ˆ N k=1 LC(lk,gm)。第一项旨在保留多尺度学习表示中的像素级细节。第二个术语解决了将多尺度语义编码为潜在特征的重要性。最后一个术语旨在捕捉多尺度的全球-局部语义关系。
LR是像素恢复任务的损失,LC是特征比较任务的损失,特征比较的损失是比较特征之间语义差异用的负的cos相似度,最后一项比较的全局和局部的语义差异。

总结

我认为读了这篇论文收获就是尺度信息、特征信息、像素信息这三个它进行了细致的描述比较,因为这三种信息对下游任务都很重要,所以它设计了多任务来对三种信息进行学习。多尺度信息相比于像素、特征信息比较模糊,它使用金字塔结构,每次选择一个尺度进行学习,很好解决了这个问题。为了更好地提取多尺度特征,防止网络学到捷径,改进了U-Net为nsU-Net。然后设计了非常巧妙的损失函数。
我学习到了一般网络分为特征提取和任务头两部分,不知道理解对不对,然后特征提取很重要,要让提取的特征有泛化性、有代表性,任务头设计如何获取相应任务结果的同时,要设计合适的损失函数。
展望:未来,将继续探索如何将不同类型的信息以最佳方式集成到SSL中。(论文中的)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/168281.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于springboot基于会员制医疗预约服务管理系统项目【项目源码+论文说明】

基于springboot实现会员制医疗预约服务信息系统演示 摘要 会员制医疗预约服务管理信息系统是针对会员制医疗预约服务管理方面必不可少的一个部分。在会员制医疗预约服务管理的整个过程中,会员制医疗预约服务管理系统担负着最重要的角色。为满足如今日益复杂的管理需…

福建泉州航海快艇蓝光三维扫描全尺寸测量船只外观设计三维建模-CASAIM中科广电

造船行业是一个与全球经济发展密切相关的关键行业。近年来,随着全球经济的快速发展,造船行业也不断进步和发展。快艇制造业作为小型、快速的船只的产业,所生产的船只通常用于娱乐、旅游、商业等方面,因此这种类型的快艇对于外观设…

企业云网盘:如何选择最适合您的解决方案?

企业日常办公每天都会产出大量的文件,如何安全管理文件?企业如何进行高效的文件的共享?企业云网盘产品为企业提供了一个文件解决方案,其安全便捷的特点已成为文件数据管理的热门之选。然而越来越多的品牌进入了企业云网盘市场&…

HUDI概述

序言 参考资料: https://hudi.apache.org/cn/docs/0.9.0/overviewhttps://hudi.apache.org/cn/Overview | Apache Hudi //最新版本的hudi文档 与之前的文档有概述上的很大差异 概述 HUDI(Hadoop Upserts Deletes and Incrementals)是一个开源的数据…

SparkSQL之LogicalPlan概述

逻辑计划阶段在整个流程中起着承前启后的作用。在此阶段,字符串形态的SQL语句转换为树结构形态的逻辑算子树,SQL中所包含的各种处理逻辑(过滤、剪裁等)和数据信息都会被整合在逻辑算子树的不同节点中。逻辑计划本质上是一种中间过…

网络拓扑图怎么画最好?

你们好,我的网工朋友。 好久没和你们聊拓扑图了,群里总是不乏有人问,拓扑图怎么设计,怎么配置,或者让大佬看看自己做的这图有没有啥问题的…… 画拓扑图的方式有很多,在线软件,Visio&#xff…

redis的key超时策略和key淘汰机制(面试题详解)

ChatGPT给出的回答: Redis中的Key超时策略和Key淘汰机制是为了有效管理内存和控制数据的生命周期。 Key超时策略:Redis可以为每个Key设置过期时间,一旦Key过期,它将自动从Redis中删除。可以使用EXPIRE命令为Key设置过期时间&…

高等数学啃书汇总重难点(五)定积分

最近都在忙着刷题,尤其是政治和英语也开始加量复习了,该系列断更了将近2个月~不过最近在刷题的时候又遇到一些瓶颈,因此回归基础来整理一下知史点~ 总的来说,虽然第五章也是重中之重,定理数量也很多,但&…

【FLINK】Kafka数据源通过Flink-cdc进行实时数据同步

何为FLINK-CDC? CDC是Change Data Capture的缩写,中文意思是变更数据获取,flink-cdc的作用是,通过flink捕获数据源的事务变动操作记录,包括数据的增删改操作等,根据这些记录可作用于对目标端进行实时数据同…

通过热敏电阻计算温度(二)---ODrive实现分析

文章目录 通过热敏电阻计算温度(二)---ODrive实现分析测量原理图计算分析计算拟合的多项式系数根据多项式方程计算温度的函数温度计算调用函数 通过热敏电阻计算温度(二)—ODrive实现分析 ODrive计算热敏电阻的温度采用的时B值的…

# 开发趋势 Java Lambda 表达式 第三篇

开发趋势 Java Lambda 表达式 第三篇 一&#xff0c;Lambda 整合集合常规操作 List Java Lambda 表达式可以与List集合和常规操作进行整合&#xff0c;以提供一种更简洁、更可读的代码编写方式。以下是几个示例&#xff1a; 集合遍历操作&#xff1a; List<String> n…

超声波清洗机频率如何选择?高频和低频有什么区别

超声波清洗原理就是在清洗液中产生“空化效应”&#xff0c;即清洗液产生拉伸和压缩现象&#xff0c;清洗液拉伸时会产生大量微小气泡&#xff0c;清洗液压缩时气泡会被压碎破裂。这些气泡产生和破裂的局部压强可达到上千个大气压的冲击力&#xff0c;这种极强大的压力足以使得…

HBuilder打包的安卓app开屏页广告如何关闭

HBuilder打包的安卓app开屏页广告如何关闭 如上图所示&#xff0c;在打包安卓app时会默认勾选 基础开屏广告 而且无法取消 解决办法 1. 登陆 uni-ad广告联盟 网站 2. 访问广告设置链接 3. 4. 选择你的项目 5. 6. 7.

二叉排序树(BST)

二叉排序树 基本介绍 二叉排序树创建和遍历 class Node:"""创建 Node 节点"""value: int 0left Noneright Nonedef __init__(self, value: int):self.value valuedef add(self, node):"""添加节点node 表示要添加的节点&quo…

Linux高性能编程学习-TCP/IP协议族

一、TCP/IP协议族结构与主要协议 分层&#xff1a;数据链路层、网络层、传输层、应用层 1. 数据链路层 功能&#xff1a;实现网卡驱动程序&#xff0c;处理数据在不同物理介质的传输 协议&#xff1a; ARP&#xff1a;将目标机器的IP地址转成MAC地址RARP&#xff1a;将MAC地…

json-server工具准备后端接口服务环境

1.安装全局工具json-server&#xff08;全局工具仅需要安装一次&#xff09; 官网&#xff1a;json-server - npm 点击Getting started可以查看使用方法 在终端中输入yarn global add json-server或npm i json-server -g 如果输入json-server -v报错 再输入npm install -g j…

向量检索库Milvus架构及数据处理流程

文章目录 背景milvus想做的事milvus之前——向量检索的一些基础近似算法欧式距离余弦距离 常见向量索引1&#xff09; FLAT2&#xff09; Hash based3&#xff09; Tree based4&#xff09; 基于聚类的倒排5&#xff09; NSW&#xff08;Navigable Small World&#xff09;图 向…

基于卷积优化优化的BP神经网络(分类应用) - 附代码

基于卷积优化优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码 文章目录 基于卷积优化优化的BP神经网络&#xff08;分类应用&#xff09; - 附代码1.鸢尾花iris数据介绍2.数据集整理3.卷积优化优化BP神经网络3.1 BP神经网络参数设置3.2 卷积优化算法应用 4.测试结果…

目标检测的方法

目标检测大致分为两个方向:基于传统的目标检测算法和基于深度学习的目标检测算法。 1.基于传统的目标检测算法 在利用深度学习做物体检测之前,传统算法对于目标检测通常分为3个阶段:区域选取、特征提取和体征分类。 2.基于深度学习的目标检测算法 目标检测任务可分为两

密码登录虽安全,但有时很麻烦!如何禁用或删除Windows 11中的密码登录

如果你想在Windows 11上自动登录,在本指南中,我们将向你展示如何删除你的帐户密码。 在Windows 11上,你可以至少通过三种方式从帐户中删除登录密码。在你的帐户上使用密码有助于保护你的计算机和文件免受来自internet或本地的未经授权的访问。然而,在某些情况下,密码可能…