回归预测 | MATLAB实现基于BP-Adaboost的BP神经网络结合AdaBoost多输入单输出回归预测

回归预测 | MATLAB实现基于BP-Adaboost的BP神经网络结合AdaBoost多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现基于BP-Adaboost的BP神经网络结合AdaBoost多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

1.MATLAB实现基于BP-Adaboost的BP神经网络结合AdaBoost多输入单输出回归预测;
2.运行环境为Matlab2018b;
3.输入多个特征,输出单个变量,多变量回归预测;
4.data为数据集,excel数据,前7列输入,最后1列输出,主程序运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MAE、MAPE多指标评价。

模型描述

BP-Adaboost是BP神经网络结合AdaBoost多输入单输出回归预测是一种基于机器学习和集成学习的预测方法,其主要思想是将BP神经网络和AdaBoost算法相结合,通过多输入单输出回归模型进行预测。
具体流程如下:
数据预处理:对原始数据进行清洗、归一化和分割等预处理步骤。
特征提取:利用BP神经网络模型对数据进行特征提取,得到多个特征向量作为AdaBoost算法的输入。
AdaBoost模型训练:利用AdaBoost算法对多个特征向量进行加权组合,得到最终的预测结果。
模型评估:对预测结果进行评估,包括平均绝对误差(MAE)等指标。
模型优化:根据评估结果对模型进行优化,可以尝试调整模型的参数、改变AdaBoost算法的参数等。
预测应用:将优化后的模型应用于实际预测任务中,进行实时预测。
该方法的优点在于,BP神经网络模型可以提取数据特征,而AdaBoost算法可以有效地利用多个特征向量进行加权组合,提高预测准确率。同时,该方法不仅适用于单一数据源的预测任务,也可以应用于多数据源的集成预测任务中。缺点在于,该方法对数据量和计算资源的要求较高,需要大量的训练数据和计算能力。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现基于BP-Adaboost的BP神经网络AdaBoost多输入单输出回归预测
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/168461.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

嵌入式养成计划-46----QT--简易版网络聊天室实现--QT如何连接数据库

一百一十九、简易版网络聊天室实现 119.1 QT实现连接TCP协议 119.1.1 基于TCP的通信流程 119.1.2 QT中实现服务器过程 使用QTcpServer实例化一个服务器对象设置监听状态,通过listen()函数,可以监听特定的主机,也可以监听所有客户端&#x…

Andriod学习笔记(二)

页面设计的零碎知识 通用属性设置文本大小设置视图宽高设置视图的对齐方式 页面布局LinearLayoutRelativeLayoutGridLayoutScollView 按钮触控ButtonImageViewImageButton 案例:简易计算机 通用属性 设置文本大小 纯数字的setTextSize方法,内部默认字体…

flutter doctor检测环境,出现CocoaPods installed but not working

1. 安装flutter, 地址: 安装和环境配置 - Flutter 中文文档 - Flutter 中文开发者网站 - Flutter 2. 安装成功后,通过flutter doctor检测环境。以mac为例,出现了CocoaPods installed but not working 错误提示时,以下为解决方案: 2.1 rvm i…

【JavaEE】JUC 常见的类 -- 多线程篇(8)

JUC 常见的类 1. Callable 接口2. ReentrantLock3. 原子类4. 线程池5. 信号量 Semaphore6. CountDownLatch 1. Callable 接口 Callable Interface 也是一种创建线程的方式 Runnable 能表示一个任务 (run方法) – 返回 voidCallable 也能表示一个任务(call方法) 返回一个具体的…

vue重修之自定义项目、ESLint和代码规范修复

文章目录 VueCli 自定义创建项目ESlint代码规范及手动修复代码规范错误 VueCli 自定义创建项目 安装脚手架 (已安装) npm i vue/cli -g创建项目 vue create xxx选项 Vue CLI v5.0.8 ? Please pick a preset:Default ([Vue 3] babel, eslint)Default ([Vue 2] babel, eslint) …

阿里云服务结构--长期更新

CNCF 全称Cloud Native Computing Foundation(云原生计算基金会),成立于 2015 年7月21日(于美国波特兰OSCON 2015上宣布),其最初的口号是坚持和整合开源技术来让编排容器作为微服务架构的一部分&#xff0…

5256C 5G终端综合测试仪

01 5256C 5G终端综合测试仪 产品综述: 5256C 5G终端综合测试仪主要用于5G终端、基带芯片的研发、生产、校准、检测、认证和教学等领域。该仪表具备5G信号发送功能、5G信号功率特性、解调特性和频谱特性分析功能,支持5G终端的产线高速校准及终端发射机…

集成学习方法(随机森林和AdaBoost)

释义 集成学习很好的避免了单一学习模型带来的过拟合问题 根据个体学习器的生成方式,目前的集成学习方法大致可分为两大类: Bagging(个体学习器间不存在强依赖关系、可同时生成的并行化方法) 流行版本:随机森林(random forest)Boosting(个体…

数据结构和算法——用C语言实现所有树形结构及相关算法

文章目录 前言树和森林基础概念二叉树二叉树的遍历二叉树的构造树和森林与二叉树之间的转化树和森林的遍历 满二叉树完全二叉树线索二叉树线索二叉树的构造寻找前驱和后继线索二叉树的遍历 最优二叉树(哈夫曼树)哈夫曼树的构造哈夫曼编码 二叉排序树&…

win10专业版驱动开发

我使用的系统版本如何下: 使用的visual studio为VS2019,使用的SDK,WDK如下: 在visual studio单个组件里选择SDK10.0.018362.0 在WDK里面选择版本为: 下载链接如下: 以前的 WDK 版本和其他下载 - Windows drivers | Microsoft Le…

Kubernetes - 一键安装部署 K8S(附:Kubernetes Dashboard)

问题描述 不知道大伙是如何安装 K8s,特别还是集群的时候,我上一次安装搭建的时候,那个恶心到我了,真的是一步一个脚印走完整个搭建流程,爬了不少坑。 于是,才有了今天的文章,到底有没有可以一…

YOLO V8训练自己的数据集并测试

目录 1 YOLOV8部署 2 标注软件labelme安装 3 将labelme转化为YOLOV8支持的数据格式 4 开始训练 5 利用训练结果进行测试 1 YOLOV8部署 我的一篇博客已经提到,这里不再赘述: YOLO V8语义分割模型部署-CSDN博客YOLO V8语义分割模型部署https://blog.cs…

【仙逆】王林用计灭富二代,有长命锁也没用,藤化元一怒请一人出山

【侵权联系删除】【文/郑尔巴金】 仙逆动漫第七集已经更新了。而这一集看下来,可以说非常精彩,全程在打,期间还能看到主角王林用谋,是如何一步步的把敌人藤厉引入陷阱灭杀的,更可以看到王林是如何筑基的。那么多的不说…

Xcode14创建github远程仓库Token

1.点击Create a Token on GitHub 2.在打开的网页中,登陆GitHub 3.点击生成Token 这是不能为空 4.Token创建成功如下: 5.复制Token到Xcode然后点击Sign In登陆 正在创建远程我仓库 正在将本地仓库代码推入远程仓库 创建成功

深入理解算法:从基础到实践

深入理解算法:从基础到实践 1. 算法的定义2. 算法的特性3. 算法的分类按解决问题的性质分类:按算法的设计思路分类: 4. 算法分析5. 算法示例a. 搜索算法示例:二分搜索b. 排序算法示例:快速排序c. 动态规划示例&#xf…

07、Python -- 序列相关函数与封包解包

目录 使用函数字符串也能比较大小序列封包序列解包多变量同时赋值 最大值、最小值、长度 序列解包与封包 使用函数 len()、max()、min() 函数可获取元组、列表的长度、最大值和最小值。 字符串也能比较大小 字符串比较大小时,将会依次按字符串中每个字符对应的编…

华为eNSP配置专题-RIP路由协议的配置

文章目录 华为eNSP配置专题-RIP路由协议的配置0、概要介绍1、前置环境1.1、宿主机1.2、eNSP模拟器 2、基本环境搭建2.1、终端构成和连接2.2、终端的基本配置 3、RIP路由的配置3.1、RIP路由的配置3.2、RIP路由的删除 华为eNSP配置专题-RIP路由协议的配置 0、概要介绍 路由信息…

【python入门篇】字符串(4)

这一章节来说下字符串的使用,字符串是 Python 中最常用的数据类型,我们可以使用单引号( )或 双引号( " )来创建字符串,那么接下来就进入本章节的一个学习。 一、环境配置 我这边python的环境是3.7.8版本的&…

2024王道考研计算机组成原理——指令系统

零、本章概要 指令寻址:解决的是PC"1"的问题 数据寻址:使用寄存器/内存/结合 基址寻址:用于多道程序的并发执行 直接寻址:call 0x12345678 变址寻址:esi edi用于循环,因为使用直接寻址需要一堆…

dashboard报错 错误:无法获取网络列表、dashboard报错 错误:无法获取云主机列表 解决流程

文章目录 错误说明dashboard上报错底层命令报错查看日志message日志httpd报错日志错误日志分析开始解决测试底层命令dashboard错误说明 dashboard上报错 首先,dashboard上无论是管理员还是其他项目,均无法获取云主机和网络信息,具体报错如下