机器学习中常见的特征工程处理

一、特征工程

特征工程(Feature Engineering)对特征进行进一步分析,并对数据进行处理。
常见的特征工程包括:异常值处理缺失值处理数据分桶特征处理特征构造特征筛选及降维等。
在这里插入图片描述

1、异常值处理

在这里插入图片描述

'''具体实现'''
from scipy.stats import boxcox
boxcox_transformed_data = boxcox(original_data)

1.1 箱线图

箱线图筛选异常并进行截尾,这里不用删除,其原因为:
1、笔者已经合并了训练集和测试集,若删除的话,肯定会删除测试集的数据
2、删除有时候会改变数据的分布等

"""这里包装了一个异常值处理的代码,可以随便调用"""
def outliers_proc(data, col_name, scale=3):   """ 用于截尾异常值, 默认用box_plot(scale=3)进行清洗   param:            data:接收pandas数据格式           col_name: pandas列名         scale: 尺度    """    data_col = data[col_name]    Q1 = data_col.quantile(0.25) # 0.25分位数  Q3 = data_col.quantile(0.75)  # 0.75分位数   IQR = Q3 - Q1data_col[data_col < Q1 - (scale * IQR)] = Q1 - (scale * IQR)    data_col[data_col > Q3 + (scale * IQR)] = Q3 + (scale * IQR)return data[col_name]
num_data['power'] = outliers_proc(num_data, 'power')

1.2 缺失值

关于缺失值处理的方式,有几种情况:
1、不处理(这是针对xgboost等树模型),有些模型有处理缺失的机制,所以可以不处理
2、如果缺失的太多,可以考虑删除该列
3、插值补全(均值,中位数,众数,建模预测,多重插补等)
4、分箱处理,缺失值一个箱。

''' 删除重复值'''
data.drop_duplicates()
dropna()可以直接删除缺失样本,但是有点不太好
'''填充固定值'''
train_data.fillna(0, inplace=True) # 填充 0
data.fillna({0:1000, 1:100, 2:0, 4:5})   # 可以使用字典的形式为不用列设定不同的填充值
train_data.fillna(train_data.mean(),inplace=True) # 填充均值
train_data.fillna(train_data.median(),inplace=True) # 填充中位数
train_data.fillna(train_data.mode(),inplace=True) # 填充众数
train_data.fillna(method='pad', inplace=True) # 填充前一条数据的值,但是前一条也不一定有值
train_data.fillna(method='bfill', inplace=True) # 填充后一条数据的值,但是后一条也不一定有值
'''插值法:用插值法拟合出缺失的数据,然后进行填充'''
for f in features:     train_data[f] = train_data[f].interpolate()
train_data.dropna(inplace=True)
'''填充KNN数据:先利用knn计算临近的k个数据,然后填充他们的均值'''
from fancyimpute import KNN
train_data_x = pd.DataFrame(KNN(k=6).fit_transform(train_data_x), columns=features)

1.3 数据分桶

连续值经常离散化或者分离成“箱子”进行分析,为什么要做数据分桶呢?·离散后稀疏向量内积乘法运算速度更快,计算结果也方便存储,容易扩展;
1、离散后的特征对异常值更具鲁棒性,如age>30为1否则为0,对于年龄为200的也不会对模型造成很大的干扰;
2、LR属于广义线性模型,表达能力有限,经过离散化后,每个变量有单独的权重,这相当于引入了非线性,能够提升模型的表达能力,加大拟合;
3、离散后特征可以进行特征交叉,提升表达能力,由M+N个变量编程M*N个变量,进一步引入非线形,提升了表达能力;
4、特征离散后模型更稳定,如用户年龄区间,不会因为用户年龄长了一岁就变化当然还有很多原因,LightGBM在改进XGBoost时就增加了数据分桶,增强了模型的泛化性。
现在介绍数据分桶的方式:
等频分桶
等距分桶
Best-KS分桶(类似利用基尼指数进行二分类)
卡方分桶
最好将数据分桶的特征作为新一列的特征,不要把原来的数据给替换掉,所以在这里通过分桶的方式做一个特征出来看看,以power为例:

"""下面以power为例进行分桶, 当然构造一列新特征了"""
bin = [i*10 for i in range(31)]
num_data['power_bin'] = pd.cut(num_data['power'],bin,labels=False)

当然这里的新特征会有缺失。这里也放一个数据分桶的其他例子(迁移之用)

# 连续值经常离散化或者分离成“箱子”进行分析。
# 假设某项研究中一组人群的数据,想将他们进行分组,放入离散的年龄框中
ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32]
# 如果按年龄分成18-25, 26-35, 36-60, 61以上的若干组,可以使用pandas中的cut
bins = [18, 25, 35, 60, 100]         # 定义箱子的边
cats = pd.cut(ages, bins)
print(cats)   # 这是个categories对象  通过bin分成了四个区间,然后返回每个年龄属于哪个区间
# codes属性
print(cats.codes)    #  这里返回一个数组,指明每一个年龄属于哪个区间
print(cats.categories)
print(pd.value_counts(cats))   # 返回结果是每个区间年龄的个数
# 与区间的数学符号一致, 小括号表示开放,中括号表示封闭, 可以通过right参数改变
print(pd.cut(ages, bins, right=False))
# 可以通过labels自定义箱名或者区间名
group_names = ['Youth', 'YonngAdult', 'MiddleAged', 'Senior']
data = pd.cut(ages, bins, labels=group_names)
print(data)
print(pd.value_counts(data))
# 如果将箱子的边替代为箱子的个数,pandas将根据数据中的最小值和最大值计算出等长的箱子
data2 = np.random.rand(20)
print(pd.cut(data2, 4, precision=2))   # precision=2 将十进制精度限制在2位
#qcut是另一个分箱相关的函数,基于样本分位数进行分箱。取决于数据的分布,使用cut不会使每个箱子
具有相同数据数量的数据点,而qcut,使用样本的分位数,可以获得等长的箱
data3 = np.random.randn(1000)   # 正态分布
cats = pd.qcut(data3, 4)
print(pd.value_counts(cats))

1.4 数据转换

数据转换的方式有:
数据归一化(Min MaxScaler)
标准化(StandardScaler)
对数变换(log1p)
转换数据类型(astype)
独热编码(OneHotEncoder)
标签编码(LabelEncoder)
修复偏斜特征(boxcox1p)
1.数值特征归一化,因为这里数值的取值范围相差很大

minmax = MinMaxScaler()
num_data_minmax = minmax.fit_transform(num_data)
num_data_minmax = pd.DataFrame(num_data_minmax, columns=num_data.columns, index=num_data.index)

2.类别特征独热一下

"""类别特征某些需要独热编码一下"""
hot_features = ['bodyType', 'fuelType', 'gearbox', 'notRepairedDamage']
cat_data_hot = pd.get_dummies(cat_data, columns=hot_features)

3.关于高势集特征model,也就是类别中取值个数非常多的,一般可以使用聚类的方式,然后独热,这里就采用了这种方式:

from scipy.cluster.hierarchy import linkage, dendrogram
from sklearn.cluster import AgglomerativeClustering
from sklearn.cluster import KMeans
ac = KMeans(n_clusters=3)
ac.fit(model_price_data)
model_fea = ac.predict(model_price_data)
plt.scatter(model_price_data[:,0],model_price_data[:,1],c=model_fea)
cat_data_hot['model_fea'] = model_fea
cat_data_hot = pd.get_dummies(cat_data_hot, columns=['model_fea'])

1.5 特征构造

在特征构造的时候,需要借助一些背景知识,遵循的一般原则就是需要发挥想象力,尽可能多的创造特征,不用先考虑哪些特征可能好,可能不好,先弥补这个广度。特征构造的时候需要考虑数值特征,类别特征,时间特征。
对于数值特征,一般会尝试一些它们之间的加减组合(当然不要乱来,根据特征表达的含义)或者提取一些统计特征
对于类别特征,我们一般会尝试之间的交叉组合,embedding也是一种思路(将离散变量转变为连续向量)
对于时间特征,这一块又可以作为一个大专题来学习,在时间序列的预测中这一块非常重要,也会非常复杂,需要就尽可能多的挖掘时间信息,会有不同的方式技巧。当然在这个比赛中涉及的实际序列数据有一点点,不会那么复杂。
eg:
在这里插入图片描述
1、时间特征的构造
根据上面的分析,可以构造的时间特征如下:
(1)汽车的上线日期与汽车的注册日期之差就是汽车的使用时间,一般来说与价格成反比
(2)对汽车的使用时间进行分箱,使用了3年以下,3-7年,7-10年和10年以上,分为四个等级,10年之后就是报废车了,应该会影响价格
(3)淡旺季也会影响价格,所以可以从汽车的上线日期上提取一下淡旺季信息
汽车的使用特征
createDate-regDate,反应汽车使用时间,一般来说与价格成反比。但要注意的问题就是时间格式,regDateFalse这个字段有些是0月,如果忽略错误计算的话,使用时间有一些会是空值,当然可以考虑删除这些空值,但是因为训练集和测试集合并了,那么就不轻易删除了。
本文采取的办法是把错误字段都给他加1个月,然后计算出天数之后在加上30天(这个有不同的处理方式,但是一般不喜欢删除或者置为空,因为删除和空值都有潜在的副作用)

# 这里是为了标记一下哪些字段有错误
def regDateFalse(x):    if str(x)[4:6] == '00':        return 1    else:         return 0
time_data['regDateFalse'] = time_data['regDate'].apply(lambda x: regDateFalse(x))
# 这里是改正错误字段
def changeFalse(x):    x = str(x)    if x[4:6] == '00':        x = x[0:4] + '01' + x[6:]       x = int(x)   return x
time_data['regDate'] = time_data['regDate'].apply(lambda x: changeFalse(x))
# 使用时间:data['creatDate'] - data['regDate'],反应汽车使用时间,一般来说价格与使用时间成反比
# 不过要注意,数据里有时间出错的格式,所以我们需要 errors='coerce'
time_data['used_time'] = (pd.to_datetime(time_data['creatDate'], format='%Y%m%d')-pd.to_datetime(time_data['regDate'], format='%Y%m%d')).dt.days
# 修改错误# 但是需要加上那一个月
time_data.loc[time_data.regDateFalse==1, 'used_time'] += 30
# 删除标记列
del time_data['regDateFalse']

汽车是不是符合报废
时间特征还可以继续提取,我们假设用了10年的车作为报废车的话,那么我们可以根据使用天数计算出年数,然后根据年数构造出一个特征是不是报废。

# 使用时间换成年来表示time_data['used_time'] = time_data['used_time'] / 365.0
time_data['Is_scrap'] = time_data['used_time'].apply(lambda x: 1 if x>=10 else 0)

我们还可以对used_time进行分箱,这个是根据背景估价的方法可以发现,汽车的使用时间3年,3-7年,10年以上的估价会有不同,所以分一下箱。

bins = [0, 3, 7, 10, 20, 30]
time_data['estivalue'] = pd.cut(time_data['used_time'], bins, labels=False)

这样就又构造了两个时间特征。ls_scrap表示是否报废,estivalue表示使用时间的分箱。
是不是淡旺季
这个是根据汽车的上线售卖时间看,每年的2,3月份及6,7,8月份是整个汽车行业的低谷,年初和年末及9月份是二手车销售的黄金时期,所以根据上线时间选出淡旺季。

# 选出淡旺季
low_seasons = ['3', '6', '7', '8']
time_data['is_low_seasons'] = time_data['creatDate'].apply(lambda x: 1 if str(x)[5] in low_seasons else 0)
# 独热一下
time_data = pd.get_dummies(time_data, columns=['is_low_seasons'])
# 这样时间特征构造完毕,删除日期了
del time_data['regDate']
del time_data['creatDate']

根据汽车的使用时间或者淡旺季分桶进行统计特征的构造

# 构造统计特征的话需要在训练集上先计算
train_data_timestats = train_data.copy()   # 不要动train_data
train_data_timestats['estivalue'] = time_data['estivalue'][:train_data.shape[0]]
train_data_timestats['price'] = train_target
train_gt = train_data_timestats.groupby('estivalue')
all_info = {}
for kind, kind_data in train_gt:    info = {}    kind_data = kind_data[kind_data['price'] > 0]    info['estivalue_count'] = len(kind_data)    info['estivalue_price_max'] = kind_data.price.max()    info['estivalue_price_median'] = kind_data.price.median()    info['estivalue_price_min'] = kind_data.price.min()    info['estivalue_price_sum'] = kind_data.price.sum()    info['estivalueprice_std'] = kind_data.price.std()    info['estivalue_price_average'] = round(kind_data.price.sum() / (len(kind_data) + 1), 2)    all_info[kind] = info
estivalue_fe = pd.DataFrame(all_info).T.reset_index().rename(columns={"index": "estivalue"})
time_data = time_data.merge(estivalue_fe,how='left', on='estivalue')

类别特征的构造
经过上面的分析,可以构造的类别特征如下:
1、从邮编中提取城市信息,因为是德国的数据,所以参考德国的邮编,加入先验知识,但是感觉这个没有用,可以先试一下
2、最好是从regioncode中提取出是不是华东地区,因为华东地区是二手车交易的主要地区(这个没弄出来,不知道这些编码到底指的哪跟哪)
3、私用车和商用车分开(body Type提取)
4、是不是微型车单独处理,所以感觉那些车的类型OneHot的时候有点分散了(bodyType这个提取,然后one-hot)
5、新能源车和燃油车分开(在fuelType中提取,然后进行OneHot)
6、地区编码还是有影响的,不同的地区汽车的保率不同
7、品牌这块可以提取一些统计量,统计特征的话上面这些新构造的特征其实也可以提取注意,OneHot不要太早,否则有些特征就没法提取潜在信息了。
邮编特征
从邮编中提取城市信息,因为是德国的数据,所以参考德国的邮编,加入先验知识。

cat_data['city'] = cat_data['regionCode'].apply(lambda x: str(x)[0])

私用车和商务车分开(bodyType)

com_car = [2.0, 3.0, 6.0]  # 商用车
GL_car = [0.0, 4.0, 5.0]   # 豪华系列  
self_car = [1.0, 7.0]
def class_bodyType(x):   if x in GL_car:       return 0    elif x in com_car:        return 1    else:        return 2
cat_data['car_class'] = cat_data['bodyType'].apply(lambda x : class_bodyType(x))

新能源车和燃油车分开(fuelType)

# 是否是新能源
is_fuel = [0.0, 1.0, 2.0, 3.0]
cat_data['is_fuel'] = cat_data['fuelType'].apply(lambda x: 1 if x in is_fuel else 0)

构造统计特征
这一块依然是可以构造很多统计特征,可以根据brand,燃油类型,gearbox类型,车型等,都可以,这里只拿一个举例,其他的类似,可以封装成一个函数处理。
以gearbox构建统计特征:

train_data_gearbox = train_data.copy()   # 不要动
train_datatrain_data_gearbox['gearbox'] = cat_data['gearbox'][:train_data.shape[0]]
train_data_gearbox['price'] = train_target
train_gb = train_data_gearbox.groupby('gearbox')
all_info = {}
for kind, kind_data in train_gb:    info = {}    kind_data = kind_data[kind_data['price'] > 0]    info['gearbox_count'] = len(kind_data)    info['gearbox_price_max'] = kind_data.price.max()    info['gearbox_price_median'] = kind_data.price.median()    info['gearbox_price_min'] = kind_data.price.min()    info['gearbox_price_sum'] = kind_data.price.sum()    info['gearbox_std'] = kind_data.price.std()    info['gearbox_price_average'] = round(kind_data.price.sum() / (len(kind_data) + 1), 2)    all_info[kind] = info
gearbox_fe = pd.DataFrame(all_info).T.reset_index().rename(columns={"index": "gearbox"})
cat_data = cat_data.merge(gearbox_fe, how='left', on='gearbox')

当然下面就可以把bodyType和fuelType删除,因为该提取的信息也提取完了,该独热的独热。

# 删掉bodyType和fuelType,然后把gearbox, car_class is_fuel独热一下, 这个不能太早,构造晚了统计特征之后再独热
del cat_data['bodyType']
del cat_data['fuelType']
cat_data = pd.get_dummies(cat_data, columns=['gearbox', 'car_class', 'is_fuel', 'notRepairedDamage'])

数据特征的构造
数值特征这块,由于大部分都是匿名特征,处理起来不是太好处理,只能尝试一些加减组合和统计对里程进行一个分箱操作
一部车有效寿命30万公里,将其分为5段,每段6万公里,每段价值依序为新车价的5/15、4/15、
3/15、2/15、1/15。假设新车价12万元,已行驶7.5万公里(5年左右),那么该车估值为12万元
×(3+3+2+1)+15=7.2万元。

# 分成三段
bins = [0, 5, 10, 15]
num_data['kil_bin'] = pd.cut(num_data['kilometer'], bins, labels=False)

V系列特征的统计特征
平均值,总和和标准差

v_features = ['v_' + str(i) for i in range(15)]
num_data['v_sum'] = num_data[v_features].apply(lambda x: x.sum(), axis=1)
num_data['v_mean'] = num_data[v_features].apply(lambda x: x.mean(), axis=1)
num_data['v_std'] = num_data[v_features].apply(lambda 
x: x.std(), axis=1)

1.6 特征筛选

特征筛选就是在高维度、已量化的特征向量中选择对指定任务更有效的特征组合,进一步提升模型性能。
详细可见特征提升之特征提取、特征筛选

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/170571.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软件测试面试1000问(含文档)

前前后后面试了有20多家的公司吧&#xff0c;最近抽空把当时的录音整理了下&#xff0c;然后给大家分享下 开头都是差不多&#xff0c;就让做一个自我介绍&#xff0c;这个不用再给大家普及了吧 同时&#xff0c;我也准备了一份软件测试视频教程&#xff08;含接口、自动化、…

kvm webvirtcloud 如何添加直通物理机的 USB 启动U盘

第一步&#xff1a;查看USB设备ID 在物理机上输入 lsusb 命令 rootubuntu:/media/usb1# lsusb Bus 002 Device 002: ID 0781:5581 SanDisk Corp. Ultra Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Bus 001 Device 004: ID 0424:2514 Microchip Technolo…

进阶课3——神经网络

1.定义与分类 神经网络是一种模仿动物神经网络行为特征&#xff0c;进行分布式并行信息处理的算法数学模型。它由大量的节点&#xff08;或神经元&#xff09;相互关联而成&#xff0c;每个节点代表一种特定的输出函数&#xff08;或称为运算&#xff09;&#xff0c;称为激励…

音乐制作软件 Studio One 6 mac中文版软件特点

Studio One mac是一款专业的音乐制作软件&#xff0c;该软件提供了全面的音频编辑和混音功能&#xff0c;包括录制、编曲、合成、采样等多种工具&#xff0c;可用于制作各种类型的音乐&#xff0c;如流行音乐、电子音乐、摇滚乐等。 Studio One mac软件特点 1. 直观易用的界面&…

On Moving Object Segmentation from Monocular Video with Transformers 论文阅读

论文信息 标题&#xff1a;On Moving Object Segmentation from Monocular Video with Transformers 作者&#xff1a; 来源&#xff1a;ICCV 时间&#xff1a;2023 代码地址&#xff1a;暂无 Abstract 通过单个移动摄像机进行移动对象检测和分割是一项具有挑战性的任务&am…

计算机算法分析与设计(20)---回溯法(0-1背包问题)

文章目录 1. 题目描述2. 算法思路3. 例题分析4. 代码编写 1. 题目描述 对于给定的 n n n 个物品&#xff0c;第 i i i 个物品的重量为 W i W_i Wi​&#xff0c;价值为 V i V_i Vi​&#xff0c;对于一个最多能装重量 c c c 的背包&#xff0c;应该如何选择放入包中的物品…

论文-分布式-并发控制-Lamport逻辑时钟

目录 前言 逻辑时钟讲解 算法类比为面包店内取号 Lamport算法的时间戳原理 Lamport算法的5个原则 举例说明 算法实现 参考文献 前言 在并发系统中&#xff0c;同步与互斥是实现资源共享的关键Lamport面包店算法作为一种经典的解决并发问题的算法&#xff0c;它的实现原…

opencalib中lidar2camera安装记录

目录 一、opencalib安装 二、lidar2camera的安装 三、测试运行 四、出现过的问题 一、opencalib安装 代码地址&#xff1a;https://github.com/PJLab-ADG/SensorsCalibration/blob/master/README.md # pull docker image sudo docker pull scllovewkf/opencalib:v1 # Aft…

出海路上离不开的Email营销,教你这样来优化!

随着互联网的不断发展&#xff0c;Email已经成为人们工作和生活中不可或缺的一部分。尤其是对于我们这些跨境企业而言&#xff0c;发送Email是一个促进销售和维护客户关系的良好渠道。而且邮件的价格也是比较低廉的&#xff0c;很适合用于日常推广营销&#xff0c;所以人手几个…

【Linux】nginx基础篇 -- 介绍及yum安装nginx

&#x1f468;‍&#x1f393;博主简介 &#x1f3c5;云计算领域优质创作者   &#x1f3c5;华为云开发者社区专家博主   &#x1f3c5;阿里云开发者社区专家博主 &#x1f48a;交流社区&#xff1a;运维交流社区 欢迎大家的加入&#xff01; &#x1f40b; 希望大家多多支…

光影之梦2:动画渲染前后对比,揭示视觉艺术的惊人转变!

动画渲染是影视艺术中不可或缺的一环&#xff0c;它赋予了角色和场景鲜活的生命。渲染过程中的光影、色彩、材质等元素&#xff0c;像是画家的调色板&#xff0c;将平淡无奇的线条和形状转化为充满韵味与情感的画面。动画角色仿佛拥有了自己的灵魂&#xff0c;无论是一颦一笑&a…

Unity Inspector编辑器扩展,枚举显示中文,枚举值自定义显示内容

记录&#xff01;Unity Inspector面板编辑器扩展&#xff0c;枚举显示中文&#xff0c;枚举值自定义显示内容&#xff0c;显示部分选项。效果如下&#xff1a; 枚举类代码&#xff1a; using System.Collections; using System.Collections.Generic; using UnityEngine;public…

9 线程池

目录 1 线程池各参数 1.1 corePoolSize 1.2 maximunPoolSize 1.3 keepAliveTime 1.4 workQueue 1.5 RejectedExecutionHandler 2 线程池工作机制 2.1 流程 2.2 提交任务 3 相关问题 3.1 线程池核心线程数、最大线程数设置 3.2 ApiPost压测 3.3 为什么要用阻塞队列…

初识Java篇

1.介绍Java语言 1.1Java是什么 Java是一种优秀的程序设计语言&#xff0c;它具有令人赏心悦目的语法和易于理解的语义。 不仅如此&#xff0c;Java还是一个有一系列计算机软件和规范形成的技术体系&#xff0c;这个技术体系提供了完整的用于软件开发和跨平台部署的支持环境&am…

小知识(5) el-table行样式失效问题

一、实现效果 子级呈现不同颜色去区分 二、最初代码 tips: 我这里使用的vue3 elementplus <el-table :row-class-name"tableRowClassName" >... </el-table>function tableRowClassName({ row, rowIndex }) {if (row.children.length 0) {return …

基于ElasticSearch+Vue实现简易搜索

基于ElasticSearchVue实现简易搜索 一、模拟数据 产品名称描述价格库存数量品牌名称智能手表智能手表&#xff0c;具有健康跟踪和通知功能。199.991000TechWatch4K智能电视4K分辨率智能电视&#xff0c;提供出色的画质。699.99500VisionTech无线耳机降噪无线耳机&#xff0c;…

html iframe 框架有哪些优缺点?

目录 前言&#xff1a; 用法&#xff1a; 理解&#xff1a; 优点&#xff1a; 嵌套外部内容&#xff1a; 独立性&#xff1a; 分离安全性&#xff1a; 跨平台兼容性&#xff1a; 方便维护&#xff1a; 缺点&#xff1a; 性能开销&#xff1a; 用户体验问题&#xf…

【网安大模型专题10.19】※论文5:ChatGPT+漏洞定位+补丁生成+补丁验证+APR方法+ChatRepair+不同修复场景+修复效果(韦恩图展示)

Keep the Conversation Going: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT 写在最前面背景介绍自动程序修复流程Process of APR (automated program repair)1、漏洞程序2、漏洞定位模块3、补丁生成4、补丁验证 &#xff08;可以学习的PPT设计&#xff09;经典的…

独家揭秘微信视频号下载提取器,使用方法!

1&#xff1a;微信视频号下载提取器&#xff0c;需要先确认自己手机电脑版本是否支持视频号的观看和浏览 2:需要下载视频号的作品发给视频下载小助手&#xff0c;聊天窗口 3&#xff1a;打开小助手解析视频号视频链接&#xff0c;保存到手机相册或者电脑上 注意视频号电脑版…

适用于 Linux 和 Unix 的特权访问管理

凭据、SSH 密钥、服务帐户、数字签名、文件系统等内容构成了Linux 环境的关键部分&#xff0c;虽然大多数PAM供应商为基于Windows的环境提供无缝的特权访问管理&#xff0c;但它们的通用性不足以为Linux&#xff0c;Unix和*nix环境扩展相同的功能和功能。 Linux 中的root权限是…