基于混合蛙跳算法的无人机航迹规划-附代码

基于混合蛙跳算法的无人机航迹规划

文章目录

  • 基于混合蛙跳算法的无人机航迹规划
    • 1.混合蛙跳搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用混合蛙跳算法来优化无人机航迹规划。

1.混合蛙跳搜索算法

混合蛙跳算法原理请参考:https://blog.csdn.net/u011835903/article/details/108294230

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得混合蛙跳搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用混合蛙跳算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,混合蛙跳算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/172840.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

WebDAV之π-Disk派盘 + 言叶

言叶是一个功能丰富的笔记软件,为跨平台而设计,可以为你在手机、电脑和其他设备中实现多端同步。从而实现高效率的记事和办公。支持Markdown的语言和多种计算机语法高亮功能,让你笔记中的内容更加主次分明,可以在这里记录一些代码什么的。同时还可以在笔记中插入图片,使其…

【Unity实战】手戳一个自定义角色换装系统——2d3d通用

文章目录 每篇一句前言素材开始切换头型添加更改颜色随机控制头型和颜色新增眼睛同样的方法配置人物的其他部位设置相同颜色部位全部部位随机绘制UI并添加点击事件通过代码控制点击事件添加颜色修改的事件其他部位效果UI切换添加随机按钮保存角色变更数据跳转场景显示角色数据 …

星闪技术 NearLink 一种专门用于短距离数据传输的新型无线通信技术

本心、输入输出、结果 文章目录 星闪技术 NearLink 一种专门用于短距离数据传输的新型无线通信技术前言星闪技术 NearLink 的诞生背景星闪技术 NearLink 简介星闪技术 NearLink 技术是一种蓝牙技术吗星闪技术 NearLink 优势星闪技术 NearLink 应用前景弘扬爱国精神星闪技术 Nea…

Android系统的特性

目录 Android系统的特性 1. 显示布局 2. 数据存储 3. 网络 4. 信息 5. 浏览器 6. 编程语言支持 7. 媒体支持 8. 流媒体支持 9. 硬件支持 10. 多点触控 11.蓝牙 12. 多任务处理 13. 语音功能 14.无线共享功能 15. 截图功能 16. 跨平台 17. 应用程序的安全机制…

僵尸网络|让人防不胜防的内部网络安全问题,作为企业IT不得不了解的基础安全

在当今数字化世界中,僵尸网络是一种令人不安的存在。它不是一种具体的物理实体,而是一种由恶意软件控制的虚拟网络。这个网络由成百上千,甚至数百万台计算机组成,这些计算机往往被感染,成为攻击者的"僵尸"&a…

SpringCloud 微服务全栈体系(六)

第八章 Gateway 服务网关 Spring Cloud Gateway 是 Spring Cloud 的一个全新项目,该项目是基于 Spring 5.0,Spring Boot 2.0 和 Project Reactor 等响应式编程和事件流技术开发的网关,它旨在为微服务架构提供一种简单有效的统一的 API 路由管…

OpenCV官方教程中文版 —— 直方图均衡化

OpenCV官方教程中文版 —— 直方图均衡化 前言一、原理二、 OpenCV 中的直方图均衡化三、 CLAHE 有限对比适应性直方图均衡化 前言 本小节我们要学习直方图均衡化的概念,以及如何使用它来改善图片的对比。 一、原理 想象一下如果一副图像中的大多是像素点的像素值…

课题学习(九)----阅读《导向钻井工具姿态动态测量的自适应滤波方法》论文笔记

一、 引言 引言直接从原论文复制,大概看一下论文的关键点: 垂直导向钻井工具在近钻头振动和工具旋转的钻井工作状态下,工具姿态参数的动态测量精度不高。为此,通过理论分析和数值仿真,提出了转速补偿的算法以消除工具旋…

极米科技H6 Pro 4K、H6 4K高亮定焦版——开启家用投影4K普及时代

智能投影产业经过几年发展,市场规模正在快速扩大。洛图数据显示,预计今年中国投影出货量有望超700万台,2027年达950万台,可见智能投影产业规模将逐渐壮大,未来可期。2023年,投影行业呈现出全新面貌&#xf…

域名系统 DNS

DNS 概述 域名系统 DNS(Domain Name System)是因特网使用的命名系统,用来把便于人们使用的机器名字转换成为 IP 地址。域名系统其实就是名字系统。为什么不叫“名字”而叫“域名”呢?这是因为在这种因特网的命名系统中使用了许多的“域(domain)”&#x…

use renv with this project create a git repository

目录 1-create a git repository 2-Use renv with this project 今天在使用Rstudio过程中,发现有下面两个新选项(1)create a git repository (2) Use renv with this project. 选中这两个选项后,创建新项目,在项目目…

Mac电脑窗口管理Magnet中文 for mac

Magnet是一款Mac窗口管理工具,它可以帮助用户轻松管理打开的窗口,提高多任务处理效率。以下是Magnet的一些主要特点和功能: 分屏模式支持:Magnet支持多种分屏模式,包括左/右/顶部/底部 1/2 分屏、左/中/右 1/3 分屏、…

sharepoint2016-2019升级到sharepoint订阅版

一、升级前准备: 要建立新的sharepoint订阅版环境,需求如下: 1.单服务器硬件需求CPU 4核,内存24G以上,硬盘300G(根据要迁移的数量来扩容大小等); 2.操作系统需要windows server 20…

RTCM数据解码

RTCM RTCM数据协议介绍 1. 一帧数据组成 2.数据接收 /*(1) synchronize frame */ if (rtcm.nbyte 0){if (data ! RTCM3PREAMB)//RTCM3PREAMB:同步码return 0;rtcm.buff[rtcm.nbyte] data;return 0;} //(2)添加一B…

python下拉框选择测试

把下拉选择的值得打印出来: import tkinter as tk def on_select(event): # 当选择下拉框中的一项时,此函数将被调用 selected event.widget.cget("text") # 获取选中的文本 print(f"You selected: {selected}") # 打印选中…

postgresql|数据库|序列Sequence的创建和管理

前言: Sequence也是postgresql数据库里的一种对象,其属性如同索引一样,但通常Sequence是配合主键来工作的,这一点不同于MySQL,MySQL的主键自增仅仅是主键的属性做一个更改,而postgresql的主键自增是需要序…

【纯离线】Ubuntu离线安装ntp时间同步服务

Ubuntu离线安装ntp服务 准备阶段:下载安装包 apt-get download ntp apt-get download ntpdate 一、服务端( 192.166.6.xx) 1、环境准备 先判断是否已安装 systemd-timesyncd systemctl is-active systemd-timesyncd 如果返回结果是 active,则表示…

JVM虚拟机详解

目录 01JVM由哪些部分组成/运行流程 什么是程序计数器 详细介绍堆 介绍方法区(Method Area) 直接内存 虚拟机栈(Java Virtual machine Stacks) 垃圾回收是否涉及栈内存 栈内存分配越大越好吗 方法内的局部变量是否线程安全 什么情况下会导致栈…

GoLong的学习之路(十四)语法之标准库 time(时间包)的使用

文章目录 time包跨时区时间戳时间间隔时间操作addSubEqualBeforeAfter 定时器时间格式化解析字符串格式的时间 time包 时间和日期是我们编程中经常会用到的,本文主要介绍了 Go 语言内置的 time 包的基本用法。 time 包提供了一些关于时间显示和测量用的函数。time…

OpenText 安全取证软件——降低成本和风险的同时,简化电子取证流程

OpenText 安全取证软件,行业标准的数字调查解决方案,适用于各种规模和各种行业的组织 降低成本和复杂性 • 远程调查比轮流调查过程更有效 对结果持有信心 • 磁盘级可见性可以完成相关端点数据的搜索和收集 谨慎调查 • 完整的网络调查&#xf…