基于入侵杂草算法的无人机航迹规划-附代码

基于入侵杂草算法的无人机航迹规划

文章目录

  • 基于入侵杂草算法的无人机航迹规划
    • 1.入侵杂草搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用入侵杂草算法来优化无人机航迹规划。

1.入侵杂草搜索算法

入侵杂草算法原理请参考:https://blog.csdn.net/u011835903/article/details/108491479

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得入侵杂草搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用入侵杂草算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,入侵杂草算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/173228.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

记录几个常用的docker镜像

背景 Docker 部署有着非常多的优势,可以帮助提高开发、测试和部署的效率,降低成本,使应用更具可移植性和可扩展性,包括但不限于 标准化应用发布,跨平台和主机使用:Docker的镜像提供了标准化发布环境&…

三篇论文:速览GPT在网络安全最新论文中的应用案例

GPT在网络安全领域的应用案例 写在最前面论文1:Chatgpt/CodeX引入会话式 APR 范例利用验证反馈LLM 的长期上下文窗口:更智能的反馈机制、更有效的信息合并策略、更复杂的模型结构、鼓励生成多样性和GPT类似的步骤:Conversational APR 对话式A…

Visual Studio Code的下载与安装

Visual Studio Code(简称 VS Code)是由 Microsoft 开发的免费、开源的文本编辑器,适用于多种操作系统,包括 Windows、macOS 和 Linux。它的设计目标是成为一款轻量级、高效的代码编辑工具,同时提供丰富的扩展和功能&am…

mysql查看数据表文件的存放路径

mysql查看数据表文件的存放路径_怎么看mysql表的位置在哪-CSDN博客 问题: 我们在mysql的安装目录中没有找到data(数据库存放的地方)的文件夹,我们需要找到数据库文件data的存放目录。 解决方法:在mysql的cmd中输入以下…

windows8080端口占用

查看端口占用 netstat -ano | findstr “8080”查看占用进程 tasklist | findstr “4664”关闭占用进程 taskkill /f /t /im httpd.exe

【Jenkins】新建任务FAQ

问题1. 源码管理处填入Repository URL,报错:无法连接仓库:Error performing git command: ls-remote -h https://github.com/txy2023/GolangLearning.git HEAD 原因: jenkins全局工具配置里默认没有添加git的路径,如果…

VBA技术资料MF75:测量所选单元格范围的高度和宽度

我给VBA的定义:VBA是个人小型自动化处理的有效工具。利用好了,可以大大提高自己的工作效率,而且可以提高数据的准确度。我的教程一共九套,分为初级、中级、高级三大部分。是对VBA的系统讲解,从简单的入门,到…

基于水循环算法的无人机航迹规划-附代码

基于水循环算法的无人机航迹规划 文章目录 基于水循环算法的无人机航迹规划1.水循环搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要:本文主要介绍利用水循环算法来优化无人机航迹规划。 1.水循环…

51单片机-串口

电脑与单片机通过串口交互 设置波特率(根据这个代码,去配置urt_Init()) 参照上面配置下面这个,然后删掉上面这个代码 使用SUBF进行发送,TI0代表结束,结束后需要复位 下载、打开串口,设置波特率…

轻量封装WebGPU渲染系统示例<2>-彩色立方体(源码)

当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/version-1.01/src/voxgpu/sample/VertColorCube.ts 此示例渲染系统实现的特性: 1. 用户态与系统态隔离。 2. 高频调用与低频调用隔离。 3. 面向用户的易用性封装。 4. 渲染数据和渲染机制分离。 5. …

Jmeter 接口测试,参数值为列表,如何参数化?

最近在我的教学过程中,我的一个学生问了我一个问题,他们公司的一个接口参数值是列表,列表中值的数量有多有少,问我在 jmeter 中如何让这个参数的值进行参数化? 看到这种问题,你的第一反应是什么&#xff1f…

idea 提升效率的常用快捷键 汇总

点击File --> Settings --> keymap便可进入看到 IDEA 提供的快捷键。我们也可以搜索和自定义所有快捷键 下面13个事我常用的快捷键,后面还有全部,可以当做字典来查 1.当前文件下查找:CtrlF 当前文件下替换:CtrlR 2.当前…

postgresql 实践

1. 环境搭建 参考:http://www.lvesu.com/blog/main/cms-532.html 1.1. 安装依赖 # 需要安装 postgresql-devel 插件 yum install postgresql-devel* # 安装 pg 和 py 的驱动: # Debian系: apt-get install libpq-dev python-dev # RedHat系&#xff1…

NPM【问题 01】npm i node-sass@4.14.1报错not found: python2及Cannot download问题处理

node-sass安装问题处理 1.问题2.处理2.1 方案一【我的环境失败】2.2 方案二【成功】2.3 方案三【成功】 1.问题 gyp verb which failed Error: not found: python2 # 1.添加Python27的安装路径到环境变量 gyp verb check python checking for Python executable "python…

Controller接收Postman的raw参数时,属性值全部为空

Controller接收Postman的raw参数时,属性值全部为空 情景再现 在进行业务代码的编写过程中,使用Postman等工具调用Controller接口时,发现属性值全部为空后端代码如下: Requset对象为: public class QuerySkuRequest …

【期中复习】深度学习

文章目录 机器(深度)学习的四大核心要素为什么深度学习,不增加网络宽度黑盒模型的问题计算图线性神经网络梯度下降学习率优化方法softmax函数用于多分类交叉熵线性回归与softmax回归的对比为什么需要非线性激活函数感知机线性回归、softmax回…

Unity的碰撞检测(六)

温馨提示:本文基于前一篇“Unity的碰撞检测(五)”继续探讨两个游戏对象具备刚体的BodyType均为Dynamic,但是Collision Detection属性不同的碰撞检测,阅读本文则默认已阅读前文。 (一)测试说明 在基于两个游戏对象都具…

网络原理之TCP/IP

文章目录 应用层传输层UDP协议TCP协议TCP 的工作机制1. 确认应答2. 超时重传3. 连接管理TCP 的建立连接的过程(三次握手),和断开连接的过程(四次挥手)TCP 断开连接, 四次挥手 3. 滑动窗口5. 流量控制6. 拥塞控制7. 延时应答8. 捎带应答9. 面向字节流10. 异常情况 本章节主要讨论…

帆软report JS实现填报控件只能填写一次

效果 方法: 代码: if(this.getValue()!"")//判断这个控件框是否有值,这里是不为空{this.setEnable(false)}//不为空,则不能再修改else{this.setEnable(true)}//为空,可以编辑

音画欣赏|《诗和远方》

《诗和远方》 8050cm 陈可之2020年绘 面朝大海,春暖花开 [海子] 从明天起,做一个幸福的人 喂马、劈柴,周游世界 从明天起,关心粮食和蔬菜 我有一所房子,面朝大海,春暖花开 从明天起,和每一…