大模型在百度智能问答、搜索中的应用

本文主要介绍了智能问答技术在百度搜索中的应用。包括机器问答的发展历程、生成式问答、百度搜索智能问答应用。欢迎大家加入百度搜索团队,共同探索智能问答技术的发展方向,文末有简历投递方式。

01

什么是机器问答

机器问答,就是让计算机软件系统自动回答人类提出的描述性问题。例如问:“王小丫的主持的节目叫什么”,我们可以在百度搜索框里输入任意用自然语言描述的问题,并在搜索的首位结果中可以直接得相关答案,如下图所示:

图片

区别于传统搜索引擎根据多个关键词反馈检索的网页链接,机器问答根据自然语言描述的问题直接获取答案,可以极大地提高大家获取信息的效率。机器问答在生活中无处不在,经统计,有约40%的搜索需求、约30%的对话需求都跟机器问答相关。

那么,百度搜索的机器问答应用现状如何?目前首条结果可以直接满足大部分的问答需求,并且,在百度搜索中,不限定用户问题领域,是一个开放式的问答系统,可以询问任何信息。

技术交流群

建了技术交流群!想要进交流群的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

方式①、添加微信号:mlc2060,备注:技术交流
方式②、微信搜索公众号:机器学习社区,后台回复:技术交流

在这里插入图片描述

1.1 机器问答的发展历程

机器问答的发展历程如下,与机器学习发展相吻合。

图片

从模型方法的发展上看:

2013年以前,大家主要做一些特征工程相关工作,即给定一个问题和一些候选答案,设计多种字面匹配特征,并计算问题与答案之间词的匹配度,例如BM25等算法。

2014~2015年,随着深度学习的发展,大家会使用神经网络来计算问题和答案间表示的语义距离,例如CNN、RNN等。

2016~2017年,大家会使用Attention网络结构设计各类模型结构,进一步刻画问题和答案间的深层语义匹配关系。

2018~2021年,研究主要集中在训练模型上,会使用一些更大、效果更好的预训练模型来完成复杂的问答匹配任务。

自2022年开始,大家更多关注生成模型的应用。

从数据集的发展上看:

2013年,MCTest出现,以选择题和完形填空形式为主。

2016年,SQuAD诞生,这是第一个大型阅读理解数据信息,会根据用户问题从提供的一篇文章中进行答案抽取。

2017年,百度发布了DuReader数据集,这是首个中文的阅读理解的数据集。

2018年,HotputQA等发布,更加深入研究了多跳推理、常识推理等复杂的问答场景。

1.2 机器问答建模

目前的主流范式:Retriever + Reader

Retriever = 基于query查询候选。即给定一个query,获得该query的相关候选,可能是网页、视频、表格、知识图谱等。

Reader = 从给定候选中获取答案信息。即在给定候选的基础上,结合query进一步进行答案抽取。

百度搜索就是一个非常强的一个Retriever ,它可以提供相关候选查询,所以我们的研究工作更多集中在Reader上,即基于搜索结果如何更好地完成答案抽取。

图片

早期的Reader,主要基于传统的特征工程方法,是一个很复杂的系统化pipeline流程:先分析query获得期望的答案类型、实体信息、问题类型等,并根据这些信息从候选库里检索若干候选,并设计复杂的匹配特征来计算query和候选的相关性打分,并设计排序函数进行排序,得到排序最高的答案,过程如下图。

图片

这个流程是管道串联的,每一步都存在误差的积累,整个训练流程也不可整体迭代,维护成本较高。后来,大家希望找到一种更加端到端的方法来解决以上问题,机器阅读理解(Machine Reading Comprehension,MRC)被提出出来。

MRC的任务的定义是:输入Question+Document,直接用一个模型替代复杂流程,输出Answer。早期的MRC工作会设计一些比较复杂的网络结构,来对问题和答案之间的关系进行建模。一个比较经典的方法是BiDAF,它的输入层是对整个 document 和 query 分别映射到 enbedding 表示上,各自通过 LSTM 等网络来学习问题和文档上下文的表示,之后通过 Attention 交互层,采用双向注意力对 query 和 document的关系进行建模,在此基础上再通过 LSTM 网络获取更丰富的上下文表示,最终输出层预测每个位置作为答案开始和终止的概率,概率最高的片段被抽取作为答案。

图片

早期的模型结构设计呈现百花齐放的状态,以期更好解决问题和答案的建模。

后来,预训练模型逐渐发展起来,大家意识到,复杂的模型结构设计并不太必要,transformer就是目前为止最好的模型结构,这样可以释放更多研究精力到预训练工作中,更多关注预训练的任务设计、 loss函数、预训练的数据等。

在这种情况下,产生了多种预训练模型,比如说最早的BERT和百度的ERNIE等,这些预训练模型会使MRC更加简单,大家会把query和document整体作为一个序列进行输入,query和document之间可以用一些特殊符号进行分割。经过预训练模型的语义表示建模,最后依旧预测答案开始和结束的位置并进行抽取。

图片

GEEK TALK

02

生成式问答

近期生成式技术的发展非常火热,也有非常多的工作发表。

早期一个比较有代表性的生成式Reader,是2017年的S-NET,它是针对MS-MARCO数据集专门设计的,该数据集的特点是答案来自多篇文章并且与原文中词汇不一定相同。

针对这样的任务,很自然的想法是用生成的方式来解决这个问题。它设计了一套两阶段的流程,第一阶段是答案抽取模型,跟我们上面介绍的模型非常一致,并额外引入了passage排序任务对候选文章进行相关性排序。第二阶段是生成模型,输入得到抽取结果,生成答案的总结,如下图所示。

图片

可以看出,早期的这些工作跟我们现在所使用的生成式问答流程非常相似,我们还会加一个检索模块,就是我们刚才最早提到的Retriever,然后就是候选抽取、排序、生成。但是,这个工作还是依赖于额外信息来做参考总结。大家会想,是不是可以有一个生成模型,直接生成答案,而不依赖于我们输入额外的信息知识?

2019年的T5模型首先解决了这个问题,当时它是采用了一种“预训练+迁移学习”的思路,将不同NLP任务统一到生成范式下,来统一完成问答、机器翻译、情感分析、对话等一系列任务,且通过百亿参数量的大模型(在当时算是比较大的规模)中存储的知识直接回答问题。它也验证了不同生成模型的结构,包括Encoder-Decoder方式的、Decoder-only的和混合式的。

但是,T5这类模型虽然可以完成一些简单问答,但还不足以达到可直接使用的商用状态,它的参数量及训练方式还存在改进空间,对于一些通用问题也不能直接取得非常好的效果。直到ChatGPT的出现,它会采用更大的参数规模(千亿级),并有更强的人类回复对齐能力,去理解用户指令,从而完成更加复杂的问答。可以说,ChatGPT是已达商用级别的对话和问答产品。

GEEK TALK

03

百度搜索的智能问答应用

百度搜索的问答场景是丰富多样的。答案抽取方式也有多种,比如说我们可以从百科或者网页通过信息抽取的方式得到一些知识图谱,在知识图谱上来进行答案提取;更通用的方式是从网页文本中,通过阅读理解直接抽取答案;还可以通过对一些半结构化的数据,比如表格,来进一步的提取信息,并组织成更结构化的方式展现。不止是文本,也包括对视频内容的理解和抽取。

图片

面临着这样一个丰富多样的问答场景,我们会有哪些挑战呢?

挑战1:机器问答面临复杂语义理解、推理、上下文建模难点?

挑战2:面对搜索的高流量和机器问答对复杂模型的需求,如何实现快速响应?

挑战3:开放领域的搜索场景下网页数据非常复杂,答案质量参差不齐(错误、片面),如何提供正确且高质量的答案?

3.1 解决复杂语义理解、推理、上下文建模难点

比如最开始的这个例子,如下图所示,答案中提到一个“她”,就需要做指代消解、对上下文的理解,并且上下文篇幅可能很长,通过深层次的理解才能知道所需的是一个答题节目,而不是其他节目。这个问题的解决依赖一些很复杂的模型。

图片

我们采用的解决方案是“大模型+预训练”。

在预训练中,我们会使用非常丰富的数据,包括几个阶段:

  • 首先,用T级别通用文本进行Pretrain学习基础语言模型;

  • 并且,使用百G级业务日志进行Post-pretrain实现领域和目标迁移;

  • 此外,进行细致的数据挖掘,通过G级人工标注数据进行Finetune拟合业务效果;

  • 最后,通过远程监督数据增强、标注数据质量识别、薄弱数据自动挖掘和定向标注、用户行为指引,实现数据和模型的闭环反馈。

而在大模型方面:

  • 使用百亿级参数量模型,提升知识记忆和语言理解能力

  • 通过长序列建模,充分理解上下文

例如,我们正在使用的一个模型,我们称之为 DocMRC 模型,它模拟人做阅读理解答题,阅读整个文章,逻辑如下图所示。

图片

输入层支持长序列建模,将整个doc segment sents进行切分;特别的是,我们在每句话前插入token表示,CLS用来汇聚每个句子的表示,整体输入浅层词级模型结构来学习局部表示;基于这个表示经过层次化结构学习深层上下文关系;最后输出CLS特殊token表示标注,输出答案。

输出层会有两种输出:一种是针对问题输出偏摘要等多句话答案介绍,会使用句子层的输出,然后做序列标注的输出;另一种是强调答案中的关键内容,可能是几个实体,会将token表示做序列标注预测。

3.2 提升整体模型的速度,实现快速响应

搜索每天的用户流量非常大,前面也提到,我们需要用到较大或较复杂模型,整个模型的耗时以及资源消耗也是非常大的。那么,有没有其他方式来提升整体模型的速度,实现快速响应及资源平衡?

刚才介绍的层次化的建模,对模型结构的优化,是一种解决方案。

另外有一种通用的方式:知识蒸馏,知识蒸馏是将大模型的知识提炼给单个小模型,在效果接近的情况下提升推理速度。这里我们采用了一种“多teacher多阶段蒸馏”模式。

针对问答的业务场景,我们会训练多个不同的teacher,通过不同 teacher 的集成来提升学习目标的上限。然后对于多个teacher蒸馏,一种基线方案是将每个teacher的打分或loss加权直接做平均,让student拟合,但是我们认为这种方式可能并不能确保达到非常极致的效果。我们期望根据不同样本动态做出选择(因为不同teacher的侧重有差异),设计了一种多阶段蒸馏的模式,并在其中根据数据动态选择teacher,如下图所示。

第一阶段,Teacher模型训练,训练多teacher提升学习上限;

第二阶段,无监督蒸馏,无标数据很难判断teacher的好坏,所以采用 teacher 间投票的方式,依据梯度方向动态选择teacher,剔除可能的噪声teacher;

第三阶段,有监督蒸馏,依据标注样本对teacher动态赋权。

图片

通过这样一种多阶段多teacher蒸馏的方式,我们最终得到一个效果非常好的student模型,甚至超过单个大模型效果。

3.3 如何提供正确且高质量的答案

搜索场景的问答数据非常复杂,答案质量也参差不齐,很多网页中可能存在一些错误信息或片面介绍,如何提供正确且高质量的答案是我们面临的第三个挑战。

如下图所示,是搜索中场景的复杂答案的例子。左侧是冗长答案,用户无法快速抓住重点,这种情况下需要一种方式进行总结,用户才能快速理解的答案关键信息,提升满足效率。抽取式答案提取方式已经无法满足,我们需要用生成技术对答案进行深层次压缩总结。

图片

另外,对于单篇文章中提取的答案可能不够全面,我们需要从多篇网页中做答案总结,也需要生成模型,如下图所示。我们从多篇文章中总结答案,并在答案中标注来源,用户可以清晰看到答案出处。

图片

综上,如果要生成全面、高效、正确的答案,就需要有一个更好的生成模型。目前的大语言模型非常多,但怎样的大语言模型才能完成搜索场景的问答任务呢?

GEEK TALK

04

检索增强生成

目前大语言模型直接做问答还有几个问题:

第一,大预言模型难以记住所有知识,对于一些偏长尾知识可能有错误或者不知道的情况;

第二,大语言模型的知识容易过时、更新困难,对于新知识无法及时感知;

第三,大语言模型的输出难以验证,目前用户的信赖感较差,我们无法完全信赖生成模型直接生成的答案。

所以在这种情况下,大家希望能有一些方式来进行一些辅助的答案验

4.1 检索增强生成流程

针对搜索问答场景,我们设计了检索增强生成方案,已在百度搜索落地。检索增强生成是基于搜索引擎补充相关信息,可有效缓解大模型幻觉,来提升答案的正确性、时效性以及可信度。整体流程分为几个阶段:

1、文档检索阶段,会检索得到多种参考来源;

2、答案抽取阶段,会把文章抽取关键信息,减轻生成模型负担;

3、prompt组成阶段,会根据获取的参考来源来回答问题,并提供具体要求,比如说在答案内容中序号标注来源;

4、答案生成阶段,将prompt输入生成大模型中,最终得到搜索结果。

图片

如上图所示,可以看到右侧答案是总结了多篇文章的一个结果,并且也会在其中标注上参考来源,这就是我们期望给用户提供的答案。

4.2 生成大模型训练流程

我们生成大模型的训练流程分为四个阶段,如下图所示,前两个阶段跟目前主流的生成大模型训练比较接近,后两个阶段我们做了检索增强生成问答场景下的特殊适配。

图片

第一阶段,通用预训练,我们会有一些通用的网页语料以及垂类语料,比如书籍、表格、对话等,来获得通用的预训练基础模型;

第二阶段,进行指令微调,我会提供一些通用的指令,使得模型拥有理解指令的能力;

第三阶段,标注业务指令,并用其做具体的微调,使其能理解搜索场景下的多结果组织的问答场景;

第四阶段,基于用户行为反馈做细致微调,以及通过强化学习等方式,提高生成答案的质量。

4.3 通过指令拆解,学习复杂指令

搜索的业务场景指令非常复杂,我们会提出非常具体的要求,并提供参考来源。那么如何让生成模型来理解这种复杂的指令?一种解决方案是标注很多这类复杂指令,并输入到生成模型中,但这种方式并不一定是最佳的。如果模型学习这类指令偏多了,反而无法达到更好泛化效果,造成模型效果下降。有没有其他的方式?

这里,我们借鉴推理链(CoT)的思想,提出通过指令拆解的方式,学习检索生成场景下复杂指令。

上述复杂指令通常可以通过三步简单步骤完成:

第一步,选择能用来回答问题的搜索结果;

第二步,根据选择的搜索结果进行答案的组织和生成;

第三步,用编号的形式,加上参考来源。

可以看出,对于很复杂的指令,我们可以通过多步拆解变成多个简单指令,我们会让模型先去学习并理解简单指令,之后可能不用太多复杂指令的数据,就能使模型在复杂指令上的表现达到一个非常好的水平。

4.4 推理加速及降低资源消耗

对于一些判别式模型,可以用蒸馏或一些其他的技术来做。但对于生成模型来说,模型尺寸小了对效果的影响较大,蒸馏并不特别适用,需要有一些其他的加速手段。近期业内有很多相关的工作研究,例如Inference with Reference,就是针对检索增强生成的业务场景,通过检测固定prefix,从参考中复制固定长度文本作为候选序列,验证如与模型输出一致则实现并行解码多步,如下图所示。

图片

另外也有一些更加通用的生成加速的手段,例如可以用小模型快速生成多步,把小模型的预测结果直接输入大模型,大模型验证是否解码一致,类似前一个工作也可以实现加速,但要求是尽量使我们的小模型和大模型效果接近,预测准确的概率会更大,加速比就会更大。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/173696.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

H5游戏源码分享-考眼力游戏猜猜金币在哪

H5游戏源码分享-考眼力游戏猜猜金币在哪 <!DOCTYPE html> <html> <head><meta http-equiv"Content-Type" content"text/html; charsetUTF-8"><meta charset"UTF-8"><meta name"apple-mobile-web-app-capa…

docker 部署tig监控服务

前言 tig对应的服务是influxdb grafana telegraf 此架构比传统的promethus架构更为简洁&#xff0c;虽然influxdb开源方案没有集群部署&#xff0c;但是对于中小型服务监控需求该方案简单高效 本文以docker-compose来演示这套监控体系的快速搭建和效果。 部署 docker-compos…

Wpf 使用 Prism 实战开发Day02

一.设计首页导航条 导航条的样式&#xff0c;主要是从Material DesignThemes UI 拷贝过来修改的,项目用了这个UI组件库&#xff0c;就看自己需要什么&#xff0c;就去拷过来使用&#xff0c;界面布局或其他组件使用&#xff0c;不做介绍。 直接下载源码&#xff0c;编译运行就可…

STM32F10xx 存储器和总线架构

一、系统架构 在小容量、中容量和大容量产品 中&#xff0c;主系统由以下部分构成&#xff1a; 四个驱动单元 &#xff1a; Cotex-M3内核、DCode总线&#xff08;D-bus&#xff09;和系统总线&#xff08;S-bus&#xff09; 通用DMA1和通用DMA2 四个被动单元 内部SRAM 内部…

独创改进 | RT-DETR 引入 Asymptotic Hybrid Encoder | 渐进混合特征解码结构

本专栏内容均为博主独家全网首发,未经授权,任何形式的复制、转载、洗稿或传播行为均属违法侵权行为,一经发现将采取法律手段维护合法权益。我们对所有未经授权传播行为保留追究责任的权利。请尊重原创,支持创作者的努力,共同维护网络知识产权。 文章目录 网络结构实验结果…

asp.net老年大学教务管理信息系统VS开发sqlserver数据库web结构c#编程

一、源码特点 asp.net 老年大学教务管理信息系统是一套完善的web设计管理系统&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为vs2010&#xff0c;数据库为sqlserver2008&#xff0c;使 用c#语言开发 asp.net老年大学教务管理…

element ui el-table表格纵向横向滚动条去除并隐藏空白占位列

需求 当table内容列过多时&#xff0c;可通过height属性设置table高度以固定table高度、固定表头&#xff0c;使table内容可以滚动 现在需求是右侧滚动条不好看&#xff0c;需要去除滚动条&#xff0c;并隐藏滚动条所占列的位置 // ----------修改elementui表格的默认样式-…

vue使用smooth-signature实现移动端电子签字,包括横竖屏

vue使用smooth-signature实现移动端电子签字&#xff0c;包括横竖屏 1.使用smooth-signature npm install --save smooth-signature二.页面引入插件 import SmoothSignature from "smooth-signature";三.实现效果 四.完整代码 <template><div class&quo…

Mysql数据库基本概念和Sql语言

一、数据库基本概念 1.1 数据库概述 数&#xff1a;数字信息 据&#xff1a;属性 数据&#xff1a;对一系列对象的具体属性的描述的集合 数据库&#xff1a;数据库就是用来组织(各个数据之间是有关联的&#xff0c;按照规则组织起来的)、存储和管理(对数据的增、删、改、查)的…

Godot 官方2D C#重构(4):TileMap进阶使用

文章目录 前言完成内容项目节点结构TileMap设置图片资源备选图片添加物理碰撞添加y轴遮罩判断Y Sort Enable是干什么的&#xff1f; 脚本代码 前言 Godot 官方 教程 Godot 2d 官方案例C#重构 专栏 Godot 2d 重构 github地址 完成内容 项目节点结构 TileMap设置 图片资源 备选图…

[Python]unittest-单元测试

目录 unittest的大致构成: Test Fixture Test Case-测试用例 Test Suite-测试套件 Test Runner 批量执行脚本 makeSuite() TestLoader discover() 用例的执行顺序 忽略用例执行 skip skipIf skipUnless 断言 HTML测试报告 错误截图 unittest是python中的单元测…

在Python的虚拟环境中卸载eric6的方法

问题描述 之前在电脑的Python虚拟环境中安装了PyQt5及相应的界面设计器eric6。当时安装eric6后&#xff0c;没成功运行&#xff0c;提示少一个什么系统文件。我已在旁边的台式机上安装了较新版的PyQt6&#xff0c;决定不再用老版本的eric6&#xff0c;于是我需在笔记本电脑上卸…

Redis(02)| 数据结构-SDS

一、键值对数据库是怎么实现的&#xff1f; 在开始讲数据结构之前&#xff0c;先给介绍下 Redis 是怎样实现键值对&#xff08;key-value&#xff09;数据库的。 Redis 的键值对中的 key 就是字符串对象&#xff0c;而 value 可以是字符串对象&#xff0c;也可以是集合数据类型…

创建进程中的内核操作

fork 是一个系统调用&#xff0c;流程的最后会在 sys_call_table 中找到相应的系统调用 sys_fork。 _do_fork 里面做的第一件大事就是 copy_process&#xff0c;咱们前面讲过这个思想。如果所有数据结构都从头创建一份太麻烦了&#xff0c;还不如使用惯用“伎俩”&#xff0c;…

深入探究Python中的深度学习:神经网络与卷积神经网络

当下&#xff0c;深度学习已经成为人工智能研究和应用领域的关键技术之一。作为一个开源的高级编程语言&#xff0c;Python提供了丰富的工具和库&#xff0c;为深度学习的研究和开发提供了便利。本文将深入探究Python中的深度学习&#xff0c;重点聚焦于神经网络与卷积神经网络…

信息系统项目管理师教程 第四版【第6章-项目管理概论-思维导图】

信息系统项目管理师教程 第四版【第6章-项目管理概论-思维导图】 课本里章节里所有蓝色字体的思维导图

【教学类-40-02】A4骰子纸模制作2.0(统计表、棋盘)

作品展示 背景需求 上次做了一个骰子1.0&#xff08;纸盒插口式样&#xff09;&#xff0c;但是无论是裁剪纸模&#xff08;去掉白边&#xff09;&#xff0c;还是凹造型&#xff08;立体、黏贴&#xff09;&#xff0c;4/5大班幼儿都感到困难。因此我想让纸模更简单。 1、裁…

git 推送到github远程仓库细节处理(全网最良心)

我查看了很多网上的教程都不是很好 我们先在github创建一个仓库&#xff0c;且初始化 readme 我们到本地文件初始化仓库 添加远程仓库 这时候我们就 git add . , git commit ,再准备git push 的时候 显示没有指定远程的分支 我们按照提示操作 提示我们要先git pull 提示我…

[2021]不确定成本下的处理分配

英文题目&#xff1a;Treatment Allocation under Uncertain Costs 中文题目&#xff1a;不确定成本下的处理分配 单位&#xff1a;swager、uber 时间&#xff1a;2021 论文链接&#xff1a;https://arxiv.org/pdf/2103.11066.pdf 代码&#xff1a; 摘要&#xff1a; 我…

[AutoSar NVM] 存储架构

依AutoSAR及公开知识辛苦整理&#xff0c;禁止转载。 专栏 《深入浅出AutoSAR》&#xff0c; 全文 1600 字. 图片来源&#xff1a; 知乎 汽车的ECU内存中有很多不同类型的变量&#xff0c;这些变量包括了车辆各个系统和功能所需的数据。大部分变量在ECU掉电后就会丢失&#xf…