【C++代码】爬楼梯,不同路径,整数拆分,不同搜索树,动态规划--代码随想录

  • 动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的,例如:有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。动态规划中dp[j]是由dp[j-weight[i]]推导出来的,然后取max(dp[j], dp[j - weight[i]] + value[i])。但如果是贪心呢,每次拿物品选一个最大的或者最小的就完事了,和上一个状态没有关系。

  • 状态转移公式(递推公式)是很重要,但动规不仅仅只有递推公式。对于动态规划问题,我将拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!

    • 确定 dp 数组(dp table)以及下标的含义
    • 确定递推公式
    • dp 数组如何初始化
    • 确定遍历顺序
    • 举例推导 dp 数组
  • **因为一些情况是递推公式决定了dp数组要如何初始化!**写动规题目,代码出问题很正常!找问题的最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的!一些同学对于dp的学习是黑盒的状态,就是不清楚dp数组的含义,不懂为什么这么初始化,递推公式背下来了,遍历顺序靠习惯就是这么写的,然后一鼓作气写出代码,如果代码能通过万事大吉,通过不了的话就凭感觉改一改。

题目:斐波那契数

  • 斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 01 开始,后面的每一项数字都是前面两项数字的和。也就是:F(0) = 0,F(1) = 1; F(n) = F(n - 1) + F(n - 2),其中 n > 1

  • class Solution {
    public:int fib(int n) {if(n<2){return n;}int res=fib(n-1)+fib(n-2);return res;}
    };
    
  • 时间复杂度:O(2^n);空间复杂度:O(n),算上了编程语言中实现递归的系统栈所占空间

  • 动态规划:这里我们要用一个一维 dp 数组来保存递归的结果;确定dp数组以及下标的含义,dp[i]的定义为:第i个数的斐波那契数值是dp[i]

    • 确定递推公式:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];
    • dp数组如何初始化:dp[0] = 0; dp[1] = 1;
    • 确定遍历顺序:从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的
    • 举例推导dp数组
  • class Solution {
    public:int fib(int n) {if(n<2){return n;}vector<int> dp(n+1,0);dp[1]=1;for(int i=2;i<dp.size();i++){dp[i]=dp[i-1]+dp[i-2];}return dp[dp.size()-1];}
    };
    
  • 时间复杂度:O(n); 空间复杂度:O(n)

  •         if(n<2){return n;}int dp[2]={0,1};for(int i=2;i<n+1;i++){dp[i%2]=dp[0]+dp[1];}return dp[(n)%2];
    
  • 时间复杂度:O(n);空间复杂度:O(1)

题目:爬楼梯

  • 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。每次你可以爬 12 个台阶。你有多少种不同的方法可以爬到楼顶呢?

  • 爬到第一层楼梯有一种方法,爬到二层楼梯有两种方法。那么第一层楼梯再跨两步就到第三层 ,第二层楼梯再跨一步就到第三层。所以到第三层楼梯的状态可以由第二层楼梯 和 到第一层楼梯状态推导出来,那么就可以想到动态规划了此时大家应该发现了,这不就是斐波那契数列么!

  • class Solution {
    public:int climbStairs(int n) {if(n<3){return n;}int dp[2]={1,2};for(int i=2;i<n;i++){dp[i%2]=dp[0]+dp[1];}return dp[(n-1)%2];}
    };
    
  • 后面将讲解的很多动规的题目其实都是当前状态依赖前两个,或者前三个状态,都可以做空间上的优化,但我个人认为面试中能写出版本一就够了哈,清晰明了,如果面试官要求进一步优化空间的话,我们再去优化

题目:使用最小花费爬楼梯

  • 给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。请你计算并返回达到楼梯顶部的最低花费。

    • 确定dp数组以及下标的含义:本题只需要一个一维数组dp[i]就可以了。dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]
    • 确定递推公式:可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]。dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
    • dp数组如何初始化:看一下递归公式,dp[i]由dp[i - 1],dp[i - 2]推出,既然初始化所有的dp[i]是不可能的,那么只初始化dp[0]和dp[1]就够了,其他的最终都是dp[0]dp[1]推出。题目描述中明确说了 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。” 也就是说 到达 第 0 个台阶是不花费的,但从 第0 个台阶 往上跳的话,需要花费 cost[0]。所以初始化 dp[0] = 0,dp[1] = 0;
  • class Solution {
    public:int minCostClimbingStairs(vector<int>& cost) {if(cost.size()<3){return min(cost[0],cost[1]);}vector<int> dp(cost.size()+1,0);for(int i=2;i<dp.size();i++){dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);}return dp[cost.size()];}
    };
    

题目:不同路径

  • 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。问总共有多少条不同的路径?

  • 这道题目,刚一看最直观的想法就是用图论里的深搜,来枚举出来有多少种路径。注意题目中说机器人每次只能向下或者向右移动一步,那么其实机器人走过的路径可以抽象为一棵二叉树,而叶子节点就是终点!

  • class Solution {
    public:int track(int i,int j,int m,int n){if(i>m||j>n){return 0;}if(i==m && j==n){return 1;}return track(i+1,j,m,n)+track(i,j+1,m,n);}int uniquePaths(int m, int n) {return track(0,0,m-1,n-1);}
    };//超时
    
  • 那二叉树的节点个数就是 2^(m + n - 1) - 1。可以理解深搜的算法就是遍历了整个满二叉树(其实没有遍历整个满二叉树,只是近似而已);深搜代码的时间复杂度为O(2^(m + n - 1) - 1),可以看出,这是指数级别的时间复杂度,是非常大的。

  • 动态规划:机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

    • 确定dp数组(dp table)以及下标的含义:dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。
    • 确定递推公式:想要求dp[i ][ j],只能有两个方向来推导出来,即dp[i - 1] [j] 和 dp[i] [j - 1]。那么很自然,dp[i][j] = dp[i - 1] [j] + dp[i] [j - 1],因为dp[i][j]只有这两个方向过来。
    • dp数组的初始化:首先dp[i] [0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0] [j]也同理。
    • 确定遍历顺序:dp[i] [j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。
  • class Solution {
    public:int uniquePaths(int m, int n) {vector<vector<int>> dp(m,vector<int>(n,1));for(int i=1;i<m;i++){for(int j=1;j<n;j++){dp[i][j]=dp[i-1][j]+dp[i][j-1];}}return dp[m-1][n-1];}
    };
    
  • 时间复杂度:O(m × n);空间复杂度:O(m × n)

  • 一共m,n的话,无论怎么走,走到终点都需要 m + n - 2 步。在这m + n - 2 步中,一定有 m - 1 步是要向下走的,不用管什么时候向下走。可以转化为,给你m + n - 2个不同的数,随便取m - 1个数,有几种取法。那么这就是一个组合问题了。求组合的时候,要防止两个int相乘溢出! 所以不能把算式的分子,分母都算出来再做除法。需要在计算分子的时候,不断除以分母,代码如下:

    • class Solution {
      public:int uniquePaths(int m, int n) {long long son=1;int mom=m-1;int count=m-1;int t=m+n-2;while(count--){son *= t--;while(mom!=0 && son%mom==0){son /= mom; mom--;}}return son;}
      };
      

题目:不同路径 II

  • 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?网格中的障碍物和空位置分别用 10 来表示。

  • 数论解决,完全不行,不止一块障碍物

    • class Solution {
      public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int flag =0;int temp_m=0,temp_n=0;for(int i=0;i<obstacleGrid.size();i++){for(int j=0;j<obstacleGrid[0].size();j++){if(obstacleGrid[i][j]){temp_m=i;temp_n=j;flag=1;break;}}}int count_sum=obstacleGrid.size()-1;long long son_sum=1;int mom_sum=obstacleGrid.size()-1;int mn=obstacleGrid.size()+obstacleGrid[0].size()-2;while(count_sum--){son_sum *= mn--;while(mom_sum!=0 && son_sum%mom_sum==0){son_sum /= mom_sum;mom_sum--;}}if(flag==0){return son_sum;}long long son1=1;int mom1 = temp_m;int count =temp_m;int mn1 = temp_m+temp_n;while(count--){son1 *= mn1--;while(mom1!=0 && son1%mom1==0){son1 /= mom1;mom1--;}}long long son2=1;int mom2 = obstacleGrid.size()-temp_m-1;int count2 = obstacleGrid.size()-temp_m-1;int mn2 = obstacleGrid.size()-temp_m+obstacleGrid[0].size()-temp_n-2;while(count2--){son2 *= mn2--;while(mom2!=0 && son2%mom2==0){son2 /= mom2;mom2--;}}return son_sum-son1*son2;}
      };//
      
  • 动态规划:确定dp数组(dp table)以及下标的含义,dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

  • 确定递推公式:dp[i][j] = dp[i - 1] [j] + dp[i] [j - 1]。因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)。

  • dp数组如何初始化:从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i] [0]一定为1,dp[0] [j]也同理。但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i] [ 0]应该还是初始值0。

  • class Solution {
    public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int m=obstacleGrid.size();int n=obstacleGrid[0].size();if(obstacleGrid[m-1][n-1]==1 || obstacleGrid[0][0]==1){return 0;}vector<vector<int>> dp(m,vector<int>(n,0));for(int i=0;i<m&&obstacleGrid[i][0]==0;i++){dp[i][0]=1;}for(int i=0;i<n&&obstacleGrid[0][i]==0;i++){dp[0][i]=1;}for(int i=1;i<m;i++){for(int j=1;j<n;j++){if(obstacleGrid[i][j]==1){continue;}dp[i][j]=dp[i-1][j]+dp[i][j-1];}}return dp[m-1][n-1];}
    };
    
  • 时间复杂度:O(n × m),n、m 分别为obstacleGrid 长度和宽度;空间复杂度:O(n × m)

题目:整数拆分

  • 给定一个正整数 n ,将其拆分为 k正整数 的和( k >= 2 ),并使这些整数的乘积最大化。返回 你可以获得的最大乘积

  • 确定dp数组(dp table)以及下标的含义:dp[i]:分拆数字 i,可以得到的最大乘积为dp[i]。dp[i]的定义将贯彻整个解题过程,下面哪一步想不懂了,就想想dp[i]究竟表示的是啥!

  • 确定递推公式:其实可以从1遍历j,然后有两种渠道得到dp[i].一个是j * (i - j) 直接相乘。一个是j * dp[i - j],相当于是拆分(i - j),对这个拆分不理解的话,可以回想dp数组的定义。j是从1开始遍历,拆分j的情况,在遍历j的过程中其实都计算过了。那么从1遍历j,比较(i - j) * j和dp[i - j] * j 取最大的。递推公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));也可以这么理解,j * (i - j) 是单纯的把整数拆分为两个数相乘,而j * dp[i - j]是拆分成两个以及两个以上的个数相乘。所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});

  • dp的初始化:这里我只初始化dp[2] = 1,从dp[i]的定义来说,拆分数字2,得到的最大乘积是1

  • class Solution {
    public:int integerBreak(int n) {vector<int> dp(n+1);dp[2]=1;for(int i=3;i<=n;i++){for(int j=1;j<=i/2;j++){dp[i]=max(dp[i],max((i-j)*j,dp[i-j]*j));}}return dp[n];}
    };
    
  • 时间复杂度:O(n^2); 空间复杂度:O(n)

题目:不同的二叉搜索树

  • 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。

  • n为1的时候有一棵树,n为2有两棵树,来看看n为3的时候

  • 在这里插入图片描述

    • 元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量
    • 元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量
    • 元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量
  • 确定dp数组(dp table)以及下标的含义:dp[i] : 1到i为节点组成的二叉搜索树的个数为dp[i]。也可以理解是i个不同元素节点组成的二叉搜索树的个数为dp[i] ,都是一样的。

  • 确定递推公式:dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量];j相当于是头结点的元素,从1遍历到i为止。所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量

  • dp数组如何初始化:从定义上来讲,空节点也是一棵二叉树,也是一棵二叉搜索树,这是可以说得通的。从递归公式上来讲,dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量] 中以j为头结点左子树节点数量为0,也需要dp[以j为头结点左子树节点数量] = 1, 否则乘法的结果就都变成0了。

  • class Solution {
    public:int numTrees(int n) {vector<int> dp(n+1);dp[0]=1;for(int i=1;i<=n;i++){for(int j=1;j<=i;j++){dp[i] += dp[j-1]*dp[i-j];}}return dp[n];}
    };
    
  • 时间复杂度: O ( n 2 ) O(n^2) O(n2);空间复杂度: O ( n ) O(n) O(n)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/173775.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Spring】IOC快速入门

文章目录 1. Spring简介2. IOC快速入门 1. Spring简介 Spring是一个开放源代码的Java SE/EE一站式轻量级开源框架&#xff0c;由Rod Johnson发起并创立。其核心是IOC&#xff08;控制反转&#xff09;和AOP&#xff08;面向切面编程&#xff09;&#xff0c;使得开发者可以将对…

OSPF复习

目录 一、OSPF基础&#xff08;开放式最短路径优先协议&#xff09; 1、技术背景&#xff08;RIP中存在的问题&#xff09; 2、OSPF协议特点 3、OSPF三张表 4、OSPF数据包(可抓包) 头部数据包内容&#xff1a; OSPF数据包&#xff08;五种&#xff09; (1)hello包 (2)…

在docker中创建EMQX 加数据卷

1、从虚拟容器中复制出来文件 docker run --rm emqx/emqx:5.3.0 sh -c cd /opt/emqx && tar -c etc | tar -C $PWD -x 2、将这三个文件夹分别赋予最高权限&#xff0c;也可以777可以755 chmod -R 777 data chmod -R 777 etc chmod -R 777 log 3、创建容器代码 docke…

Docker:数据卷挂载

Docker&#xff1a;数据卷挂载 1. 数据卷2. 数据卷命令补充 1. 数据卷 数据卷(volume)是一个虚拟目录&#xff0c;是容器内目录与宿主机目录之间映射的桥梁。 Nginx容器有自己独立的目录(Docker为每个镜像创建一个独立的容器,每个容器都是基于镜像创建的运行实例)&#xff0c;…

Spring Cloud之Docker的学习【详细】

目录 Docker 项目部署问题 总结 镜像与容器 Docker的安装 Docker基本操作 镜像相关命令 拉取镜像 镜像保存 删除镜像 镜像加载 容器相关命令 删除容器 数据卷 数据卷命令 数据挂载 自定义镜像 Dockerfile 案例 Docker-Compose Compose文件 Docker-Compos…

磁盘的结构(磁道,扇区,盘面,柱面,物理地址)

目录 1.磁盘、磁道、扇区的概念1.磁盘2.磁道3.扇区 2.如何在磁盘中读/写数据3.盘面、柱面的概念4.磁盘的物理地址1.根据地址读取一个“块” 5.磁盘的分类1.活动头磁道2.固定头磁盘3.根据盘片是否可更换 1.磁盘、磁道、扇区的概念 1.磁盘 磁盘的表面由一些磁性物质组成&#xf…

项目基础配置

1、Spring整合MyBatis&#xff1a; 在子工程中加入所需要的依赖 准备jdbc.properties 创建spring的配置文件、整合spring和mybatis 在spring的配置文件中加载jdbc.properties 配置数据源 测试数据库连接 配置SqlSessionFactoryBean 装配数据源 指定XXXMapper.xml文件的位…

DIANA算法c++实现

第一步对具有最大直径的簇中每个点计算平均相异度找出最大的点放入splinter group&#xff0c;其余放在放入splinter group 第二步 在old party里找出到splinter group中点的最近距离 < 到old party中点的最近距离的点&#xff0c;并将该点加入splinter group 重复第二步的…

Vue2 跨域问题报错AxiosError net::ERR_FAILED、 Network Error、ERR_NETWORK

请求场景&#xff1a; 当前页面URL&#xff1a;http://127.0.0.1:8000/testcase 跳转请求页面URL&#xff1a;http://127.0.0.1:5000/testcase_orm 使用axios请求 时 页面提示跨域报错 跨域报错信息 > Access to XMLHttpRequest at http://127.0.0.1:5000/testcase_orm fr…

Python爬虫(二十四)_selenium案例:执行javascript脚本

本章叫介绍如何使用selenium在浏览器中使用js脚本&#xff0c;更多内容请参考&#xff1a;Python学习指南 隐藏百度图片 #-*- coding:utf-8 -*- #本篇将模拟执行javascript语句from selenium import webdriver from selenium.webdriver.common.keys import Keysdriver webdri…

13. 机器学习 - 数据集的处理

文章目录 Training data splitNormalizationStandardizedONE-HOT补充&#xff1a;SOFTMAX 和 CROSS-ENTROPY Hi&#xff0c; 你好。我是茶桁。 上一节课&#xff0c;咱们讲解了『拟合』&#xff0c;了解了什么是过拟合&#xff0c;什么是欠拟合。也说过&#xff0c;如果大家以…

leetCode 76. 最小覆盖子串 + 滑动窗口 + 哈希Hash

我的往期文章&#xff1a;此题的其他解法&#xff0c;感兴趣的话可以移步看一下&#xff1a; leetCode 76. 最小覆盖子串 滑动窗口 图解&#xff08;详细&#xff09;-CSDN博客https://blog.csdn.net/weixin_41987016/article/details/134042115?spm1001.2014.3001.5501 力…

android button 按钮,设置左/右小图标,与文字居中距离

参考博客地址 功能点 支持自定义图标与文字的距离支持小图标宽高自定义支持左右自定义小图标 maven { url https://jitpack.io } implementation com.github.CMzhizhe:AppCompatButtonProject:1.0.0<com.gxx.buttonlibrary.DrawableCenterButtonandroid:layout_marginTop&…

OpenCV #以图搜图:感知哈希算法(Perceptual hash algorithm)的原理与实验

1. 介绍 感知哈希算法&#xff08;Perceptual Hash Algorithm&#xff0c;简称pHash&#xff09; 是哈希算法的一种&#xff0c;主要用来做相似图片的搜索工作。 2. 原理 感知哈希算法&#xff08;pHash&#xff09;首先将原图像缩小成一个固定大小的像素图像&#xff0c;然后…

TCP / UDP 概念 + 实验(计网自顶向下)

Github源码 moranzcw/Computer-Networking-A-Top-Down-Approach-NOTES: 《计算机网络&#xff0d;自顶向下方法(原书第6版)》编程作业&#xff0c;Wireshark实验文档的翻译和解答。 (github.com) 暂定打算分2步走&#xff0c;前置是中科大对应计网黑书的视频 第1步完成14个Wire…

Transformers实战(二)快速入门文本相似度、检索式对话机器人

Transformers实战&#xff08;二&#xff09;快速入门文本相似度、检索式对话机器人 1、文本相似度 1.1 文本相似度简介 文本匹配是一个较为宽泛的概念&#xff0c;基本上只要涉及到两段文本之间关系的&#xff0c;都可以被看作是一种文本匹配的任务&#xff0c; 只是在具体…

基于tornado BELLE 搭建本地的web 服务

我的github 将BELLE 封装成web 后端服务&#xff0c;采用tornado 框架 import timeimport torch import torch.nn as nnfrom gptq import * from modelutils import * from quant import *from transformers import AutoTokenizer import sys import json #import lightgbm a…

macOS M1安装wxPython报错

macOS12.6.6 M1安装wxPython失败&#xff1a; 报错如下&#xff1a; imagtiff.cpp:37:14: fatal error: tiff.h file not found解决办法&#xff1a; 下载源文件重新编译&#xff08;很快&#xff0c;5分钟全部搞定&#xff09;&#xff0c;分三步走&#xff1a; 第一步&…

Leetcode—21.合并两个有序链表【简单】

2023每日刷题&#xff08;十三&#xff09; Leetcode—21.合并两个有序链表 直接法实现代码 /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/ struct ListNode* mergeTwoLists(struct ListNode* list1, struct…

leetCode 136.只出现一次的数字 + 位运算

136. 只出现一次的数字 - 力扣&#xff08;LeetCode&#xff09; 给你一个 非空 整数数组 nums &#xff0c;除了某个元素只出现一次以外&#xff0c;其余每个元素均出现两次。找出那个只出现了一次的元素。你必须设计并实现线性时间复杂度的算法来解决此问题&#xff0c;且该算…