从InnoDB索引的数据结构,去理解索引

从InnoDB索引的数据结构,去理解索引

  • 1、InnoDB 中的 B+Tree
    • 1.1、B+Tree 的组成
    • 1.2、B+Tree中的数据页
  • 2、聚簇索引
    • 2.1、聚簇索引的特点
    • 2.2、聚簇索引的结构示例
    • 2.3、聚簇索引的优缺点
  • 3、非聚簇索引
    • 3.1、非聚簇索引结构示例
    • 3.2、关于回表
    • 3.3、聚簇索引和非聚簇索引的区别与代价
  • 4、扩展与问答
    • 4.1、InnoDB 和 MyISAM 对比
    • 4.2、MySQL使用InnoDB存储引擎时,为什么不建议使用过长的字段作为主键 ?
    • 4.3、MySQL使用InnoDB存储引擎时,为何不建议使用非单调字段(不是按照递增或递减的顺序进行排列的字段)作为主键 ?
    • 4.4、一般情况下,为何我们用到的B+Tree 都不会超过4层 ?

 
该篇我们都是基于 InnoDB 存储引擎的大前提下讨论的,如文中未明确指出存储引擎,一律说的是 InnoDB.

要知道 InnoDB 的索引数据结构主要是 B+Tree. 按照物理实现方式,可以将索引划分为聚簇索引非聚簇索引(也称为 二级索引辅助索引)。

 

1、InnoDB 中的 B+Tree

 

1.1、B+Tree 的组成

  • 根节点:B+Tree的最顶层节点,如果树的高度大于1,则根节点可以有多个子节点。

  • 内部节点(也称为内节点、非叶子节点):除根节点和叶子节点之外的节点,每个内部节点包含多个键值对和指向子节点的指针。内部节点用于索引,不存储实际的数据。内节点用于存放目录项InnoDB 的B+Tree中,内节点中的目录项记录必须保证唯一性,所以对于二级索引而言,二级索引(非聚簇索引)中必须包含主键列

  • 叶子节点:位于B+Tree最底层的节点,存储实际的数据(用户记录)或索引键值。叶子节点之间通过指针相互连接,形成一个链表结构,便于进行范围查询和排序操作。

      不论是存放 用户记录(指这个记录中存储了所有列的值,包括隐藏列)的数据页,还是存放目录项记录的数据页,我们都把它们存放在 B+Tree 这个数据结构中,故我们也称这些数据页为节点。每个节点(包括根节点、内部节点和叶子节点)都包含多个键值对和指向子节点的指针。B+Tree通过这种结构,将数据存储在一个平衡的多路搜索树中,从而提高了查询性能和数据访问的效率。

 

1.2、B+Tree中的数据页

 

  • 在B+Tree中,是数据存储的基本单位,也是磁盘I/O操作的最小单元。每个页通常具有固定的大小,例如InnoDB存储引擎中,页的大小默认为16KB。
  • 页中包含了节点的键值对数据和指向子节点的指针等信息。
  • 通俗来讲,一个叶子节点中有一页数据,一页数据中包含了多条用户记录、主键等信息。每页包含的数据量,与每条用户记录的大小、索引大小等相关。一个非叶子节点中也有一页数据,其包含主键、二级索引字段、下级页码等数据。
  • 在InnoDB的一个数据页中,至少存放两条数据记录

       对于非叶子节点,每个页存储了多个键值对和指向子节点的指针,用于索引和导航到下一层的页。对于叶子节点,每个页存储了实际的数据或索引键值,以及指向相邻叶子节点的指针,用于范围查询和排序操作。通过页的设计,B+Tree可以高效地利用存储空间,减少磁盘I/O操作次数,提高查询性能和数据访问的效率。

 

2、聚簇索引

 

InnoDB存储引擎的聚簇索引,是一种按照主键顺序存储数据的索引结构(由于是主键顺序存储,故主键尽量用有序的)。聚簇索引的叶子节点就是数据节点,且数据都是按照主键排序存储的。其特点是将索引和数据行,保存在同一个B+Tree中,因此查询通过聚簇索引可以直接获取数据。二级索引(非聚簇索引)中必须包含主键列,所以如果主键列很大的话,其他的索引也会占用很大的空间。

InnoDB 的一个表,要求必须有聚簇索引,且只能有一个聚簇索引。InnoDB如果没有显示指定,MySQL系统会自动选择一个非空且唯一的列作为聚簇索引,如果不存在这样的列,MySQL 会自动为 InnoDB 表生成一个隐含字段作为主键,这个字段长度为6个字节,类型为长整型。一般主键即为聚簇索引,建议主键自增

 

2.1、聚簇索引的特点

 

  • 使用记录主键值的大小进行记录和页的排序,这包含三方面的含义:

    • 页内的记录是按照主键的大小顺序排成一个 单向链表
    • 各个存放用户记录的页也是根据页中用户记录的主键大小顺序排成一个双向链表
    • 存放目录项记录的页分为不同的层次,在同一层次中的页,也是根据页中目录项记录的主键大小顺序排成一个双向链表
  • B+Tree 的叶子节点存储的是完整的用户记录。所谓用户记录,就是指这个记录中存储了所有列的值(包括隐藏列)。

 

2.2、聚簇索引的结构示例

 
以下示例使用 tb_table 表为例,tb_table表使用 InnoDB 引擎,其中包含 c1、c2、c3、c4、c5 五个字段,其中 c1 为主键,即聚簇索引。

  • 表数据示例:
c1(主键8)c2c3c4c5
14u44u
39d99d
44a44aa
53y33yy
87a71aa
104o44oe
127d77q
202e12tt
439x32xx
595b53u
766i41e
878a88aa
995m55d
  • 聚簇索引结构示例:
    聚簇索引结构示例

 

2.3、聚簇索引的优缺点

 

优点缺点
数据访问更快,因为聚簇索引将索引和数据保存在同一个B+Tree中,节省大量的 io 操作插入速度严重依赖于插入顺序,按照主键的顺序插入是最快的方式,否则将会出现页分裂,严重影响性能。所以对于 InnoDB 引擎的表,一般建议 自增的ID列作为主键
聚簇索引对主键的 排序查找范围查找 速度非常快。更新主键的代价很高,更新主键会导致被更新的行移动,页分裂调整。一般建议 主键为不可更新
_二级索引访问需要两次索引查找。使用二级索引查找时,第一次找到主键值,第二次根据主键值找到行数据,这个过程也就是回表

 

3、非聚簇索引

 

InnoDB的非聚簇索引也称为二级索引或辅助索引,它是一种基于聚簇索引创建的索引结构非聚簇索引的叶子节点并不直接存储实际的数据行,而是存储了创建非聚簇索引的字段聚簇索引的主键值。InnoDB的非聚簇索引也是按照B+Tree的数据结构来组织的,这样可以保证查询的高效性。
 

3.1、非聚簇索引结构示例

 

  • 非聚簇索引结构示例(表结构数据同 聚簇索引上述示例,其中以 c2 字段作为非聚簇索引字段):
    非聚簇索引结构示例

 

3.2、关于回表

 
说到非聚簇索引,就不得不说【回表】的概念。

我们根据非聚簇索引(二级索引)列的大小排序的 B+Tree,只能确定我们要查找记录的主键,所以如果我们要根据非聚簇索引去做查询,但查询的字段中,除了该非聚簇索引字段还包括其他字段,那就要根据非聚簇索引先查到相关用户记录的主键,再根据主键去查该用户记录行的完整数据,再筛选出需要查询的字段。

总结一下,通过非聚簇索引查询时,如果查询的字段不仅仅是该非聚簇索引字段时,就需要使用到 2 棵 B+Tree,这个过程就叫回表。

 

3.3、聚簇索引和非聚簇索引的区别与代价

 

聚簇索引和非聚簇索引的区别索引的代价
① 聚簇索引的叶子节点存储的是数据记录,非聚簇索引的叶子节点存储的是 数据位置。非聚簇索引不会影响数据表的物理存储顺序。① 空间上的代价:每建立一个索引都要为它建立一棵 B+Tree 树,每棵 B+Tree 树的每个节点都是一个数据页,一个数据页默认会占用 16KB 的存储空间,一棵 B+Tree 由许多数据页组成,那就是一个比较大的存储空间。
② 对于InnoDB存储引擎而言,一个表只能有一个聚簇索引,因为只能有一种排序存储的方式。可以有多个非聚簇索引,也就是多个索引目录提供数据检索。② 时间上的代价:每次对表中的数据进行 操作时,都会去修改各个 B+Tree 索引。B+Tree 每层节点都是按照索引列的值 从小到大的顺序排序 而组成 双向链表。不论是叶子节点中的记录,还是内节点中的记录,都是按照索引列的值,从小到大的顺序而形成的一个单向链表.增删改操作可能会对节点和记录的排序造成破坏,存储引擎需要额外的时间进行记录移位页面分裂页面回收等操作来维护好节点和记录的排序。
使用聚簇索引的时候,数据的 查询效率高,但是如果对数据进行插入、删除、更新等操作,效率会比非聚簇索引低③ 一个表上的索引建的越多,就会占用越多的存储空间,在增删改记录的时候性能就越差。

 

4、扩展与问答

 

4.1、InnoDB 和 MyISAM 对比

 

  • MyISAM 的索引方式都是非聚簇的InnoDB有一个聚簇索引,可以有多个非聚簇索引
  • 在InnoDB 的数据文件本身就是索引文件;MyISAM 索引文件和数据文件是分离的,索引文件仅保存数据记录的地址。
  • 在 InnoDB 存储引擎中,我们只需要根据主键值对 聚簇索引 进行一次查找就能找到对应的记录,而在 MyISAM 中需要进行一次回表操作,意味着 MyISAM 中建立的索引相当于全部都是二级索引。
  • InnoDB 的非聚簇索引 data域存储相应记录的主键值,而MyISAM索引记录的是地址。换句话说,InnoDB的所有非聚簇索引都引用主键作为data域。
  • MyISAM 的回表操作是十分快速的,因为是拿着地址偏移量直接到文件中取数据的。InnoDB是通过获取主键之后再去聚簇索引里找记录,虽然也不慢,但还是比不上直接拿地址去获取。
  • InnoDB要求必须有聚簇索引(MyISAM可以没有)。InnoDB如果没有显示指定,MySQL系统会自动选择一个非空且唯一的列作为聚簇索引,如果不存在这样的列,MySQL 会自动为 InnoDB 表生成一个隐含字段作为主键,这个字段长度为6个字节,类型为长整型。
     

4.2、MySQL使用InnoDB存储引擎时,为什么不建议使用过长的字段作为主键 ?

 
答:所有二级索引都引用主键索引(聚簇索引),过长的主键索引会让二级索引变得过大。

 

4.3、MySQL使用InnoDB存储引擎时,为何不建议使用非单调字段(不是按照递增或递减的顺序进行排列的字段)作为主键 ?

 
答:InnoDB的数据文件本身就是一颗B+Tree,非单调的主键会造成在插入新记录时,数据文件为了维持B+Tree的特性而频繁的分裂调整,十分低效。而使用自增字段作为主键则是一个很好的选择。

 

4.4、一般情况下,为何我们用到的B+Tree 都不会超过4层 ?

 
答:可以初步估算一下,单表的数据存储情况。假设所有存放用户记录的叶子节点代表的数据页可以存放 100 条用户记录,所有存放目录项的记录的内节点代表的数据页可以存放1000条目录项记录,那么:

  • 如果B+Tree只有 1 层,也就是只有一个用于存放用户记录的节点,最多存放 100条记录。
  • 如果B+Tree只有 2 层,最多存放的 1000 * 100 = 100,000 条记录(即十万条)。
  • 如果B+Tree只有 3 层,最多存放的 1000 * 1000 * 100 = 100,000,000 条记录(即一亿条)。
  • 如果B+Tree只有 4 层,最多存放的 1000 * 1000 * 1000 * 100 = 100,000,000,000 条记录(即一千亿条)。

 
 
 
 
 
 
 
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/174090.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32G030F6P6点灯闪烁

前言 (1)如果有嵌入式企业需要招聘湖南区域日常实习生,任何区域的暑假Linux驱动实习岗位,可C站直接私聊,或者邮件:zhangyixu02gmail.com,此消息至2025年1月1日前均有效 (2&#xff0…

centos ubantu IP一直变化,远程连接不上问题

文章目录 一、为什么IP地址会变1.主机DHCP导致 二、解决IP地址变化1.centos2.ubantu 总结 虚拟机能连接为互联网,但下一次启动IP地址再发生变化,无法使用ssh远程连接 一、为什么IP地址会变 1.主机DHCP导致 虚拟机系统(ubantu,centos…)启动后会向本地申请IP地址租约,租聘的I…

单片机为什么一直用C语言,不用其他编程语言?

单片机为什么一直用C语言,不用其他编程语言? 51 单片机规模小得拮据,C 的优势几乎看不到。放个类型信息进去都费劲,你还想用虚函数?还想模板展开?程序轻松破 10k。最近很多小伙伴找我,说想要一些…

vue3学习(十四)--- vue3中css新特性

文章目录 样式穿透:deep()scoped的原理 插槽选择器:slotted()全局选择器:global()动态绑定CSScss module 样式穿透:deep() 主要是用于修改很多vue常用的组件库(element, vant, AntDesigin),虽然配好了样式但是还是需要更改其他的样式就需要用…

Linux系统之file命令的基本使用

Linux系统之file命令的基本使用 一、file命令介绍1.1 Linux简介1.2 file命令简介 二、file命令的使用帮助2.1 file命令的help帮助信息2.2 file命令的语法解释2.3 file命令的man手册 三、文件类型介绍四、file命令的基本使用4.1 查询file版本4.2 显示文件类型4.3 输出时不显示文…

【Truffle】二、自定义合约测试

一、准备测试 上期我们自己安装部署了truffle,并且体验了测试用例的整个测试流程,实际开发中,我们可以对自己的合约进行测试。 我们首先先明白自定义合约测试需要几个文件 合约文件:既然要测试合约,肯定要有合约的源码…

玩转视图变量,轻松实现动态可视化数据分析

前言 在当今数据驱动的世界中,数据分析已经成为了企业和组织中不可或缺的一部分。传统的静态数据分析方法往往无法满足快速变化的业务需求和实时决策的要求。为了更好地应对这些挑战,观测云的动态可视化数据分析应运而生。 在动态可视化数据分析中&…

WLAN的组网架构和工作原理

目录 WLAN的组网架构 FAT AP架构 AC FIT AP架构 敏捷分布式AP 下一代园区网络:智简园区(大中型园区网络) WLAN工作原理 WLAN工作流程 1.AP上线 (1)AP获取IP地址; (2)AP发…

刷题学习记录

sql注入(bugkuctf) 打开显示一个登录框 照常用admin用户名登录,密码随便填一个,显示密码错误 接着用admin为用户名登录,密码照样随便填,结果显示用户名不存在 题目提示基于布尔的SQL盲注,猜测后端是判断用…

【华为OD:C++机试】Day-1

目录 🌷1. 统计监控、需要打开多少监控器: 🌷2. 阿里巴巴找黄金宝箱: 🌷3. 事件推送: 🌷4. 分苹果: 🌷5. 乱序整数序列两数之和绝对值最小: 🌷6.卡…

JDK项目分析的经验分享

基本类型的包装类(Character放在最后) String、StringBuffer、StringBuilder、StringJoiner、StringTokenizer(补充正则表达式的知识) CharacterIterator、StringCharacterIterator、CharsetProvider、CharsetEncoder、CharsetDecoder(较难) java.util.function下的函数表…

koa搭建服务器(二)

在上一篇文章已经成功的运行了一个http服务器,接下来就是使用Sequelize ORM(官方文档:Sequelize 简介 | Sequelize中文文档 | Sequelize中文网)来操作数据库。 1、安装依赖 首先也是需要安装相关的依赖 npm i sequelize npm i …

计算机网络——物理层

目录 一、物理层的基本概念 (一)四大特征 (二)两种信号 (三)调制和编码 (四)传输介质 1. 双绞线 (1)屏蔽双绞线 STP (2)非屏蔽…

Go学习第十三章——Gin入门与路由

Go web框架——Gin入门与路由 1 Gin框架介绍1.1 基础介绍1.2 安装Gin1.3 快速使用 2 路由2.1 基本路由GET请求POST请求 2.2 路由参数2.3 路由分组基本分组带中间件的分组 2.4 重定向 1 Gin框架介绍 github链接:https://github.com/gin-gonic/gin 中文文档&#xf…

基础课13——数据异常处理

数据异常是指数据不符合预期或不符合常识的情况。数据异常可能会导致数据分析结果不准确,甚至是错误,因此在进行数据分析之前需要对数据进行清洗和验证。 常见的数据异常包括缺失值、重复值、异常值等。 缺失值是指数据中存在未知值或未定义的值&#…

详解类生到死的来龙去脉

类生命周期和加载过程 一个类在 JVM 里的生命周期有 7 个阶段,分别是加载(Loading)、校验(Verification)、准备(Preparation)、解析(Resolution)、初始化(Ini…

前端 :用HTML , CSS ,JS 做一个秒表

1.HTML&#xff1a; <body><div id "content"><div id "top"><div id"time">00:00:000</div></div><div id "bottom"><div id "btn_start">开始</div><div …

网络协议--TCP的保活定时器

23.1 引言 许多TCP/IP的初学者会很惊奇地发现可以没有任何数据流通过一个空闲的TCP连接。也就是说&#xff0c;如果TCP连接的双方都没有向对方发送数据&#xff0c;则在两个TCP模块之间不交换任何信息。例如&#xff0c;没有可以在其他网络协议中发现的轮询。这意味着我们可以…

【计算机网络】数据链路层——以太网

文章目录 前言什么是以太网以太网帧格式6位目的地址和源地址2位类型数据长度CRC 校验和 数据在数据链路层是如何转发的 前言 前面我们学习了关于应用层——自定义协议、传输层——UDP、TCP协议、网络层——IP协议&#xff0c;今天我将为大家分享关于数据链路层——以太网方面的…

【机器学习】决策树与分类案例分析

决策树与分类案例分析 文章目录 决策树与分类案例分析1. 认识决策树2. 分类3. 决策树的划分依据4. 决策树API5. 案例&#xff1a;鸢尾花分类6. 决策树可视化7. 总结 1. 认识决策树 决策树思想的来源非常朴素&#xff0c;程序设计中的条件分支结构就是if-else结构&#xff0c;最…