stable diffusion简介和原理

Stable Diffusion中文的意思是稳定扩散,本质上是基于AI的图像扩散生成模型。
Stable Diffusion是一个引人注目的深度学习模型,它使用潜在扩散过程来生成图像,允许模型在生成图像时考虑到文本的描述。这个模型的出现引起了广泛的关注和讨论,不仅因为它在技术上的创新,还因为它在应用领域的广泛适用性。本文将详细介绍Stable Diffusion的背景、技术原理、应用场景以及其优缺点。

stable-diffusion

一、背景介绍

随着深度学习技术的不断发展,文本到图像生成已经成为了研究的热点领域。过去几年中,出现了许多文本到图像的生成模型,如GANs、VQ-VAE等。这些模型在生成图像时,通常需要使用大量的数据和计算资源,并且生成的图像质量也参差不齐。因此,开发一种更加稳定、高效且能够生成高质量图像的文本到图像生成模型成为了当务之急。

在这个背景下,Stable Diffusion应运而生。该模型由CompVis、Stability AI和LAION的研究人员和工程师共同开发,于2022年发布。与其他文本到图像生成模型相比,Stable Diffusion具有更高的稳定性和生成质量,同时使用了一种创新的潜在扩散过程来生成图像。

在这里插入图片描述

图1 stable diffusion绘画例子

二、技术原理

Stable Diffusion 技术,作为 Diffusion 改进版本,通过引入隐向量空间来解决 Diffusion 速度瓶颈,除了可专门用于文生图任务,还可以用于图生图、特定角色刻画,甚至是超分或者上色任务。作为一篇基础原理介绍,这里着重解析最常用的“文生图(text to image)”为主线,介绍 stable diffusion 计算思路以及分析各个重要的组成模块。

下图是一个基本的文生图流程,把中间的 Stable Diffusion 结构看成一个黑盒,那黑盒输入是一个文本串“paradise(天堂)、cosmic(广阔的)、beach(海滩)”,利用这项技术,输出了最右边符合输入要求的生成图片,图中产生了蓝天白云和一望无际的广阔海滩。

在这里插入图片描述

图2 Stable Diffusion组成

Stable Diffusion 的核心思想是,由于每张图片满足一定规律分布,利用文本中包含的这些分布信息作为指导,把一张纯噪声的图片逐步去噪,生成一张跟文本信息匹配的图片。它其实是一个比较组合的系统,里面包含了多个模型子模块,接下来把黑盒进行一步步拆解。stable diffusion 最直接的问题是,如何把人类输入的文字串转换成机器能理解的数字信息。这里就用到了文本编码器 text encoder(蓝色模块),可以把文字转换成计算机能理解的某种数学表示,它的输入是文字串,输出是一系列具有输入文字信息的语义向量。有了这个语义向量,就可以作为后续图片生成器 image generator(粉黄组合框)的一个控制输入,这也是 stable diffusion 技术的核心模块。图片生成器,可以分成两个子模块(粉色模块+黄色模块)来介绍。下面介绍下 stable diffusion 运行时用的主要模块:

(1) 文本编码器(蓝色模块),功能是把文字转换成计算机能理解的某种数学表示,在第三部分会介绍文本编码器是怎么训练和如何理解文字,暂时只需要了解文本编码器用的是 CLIP 模型,它的输入是文字串,输出是一系列包含文字信息的语义向量。

(2) 图片信息生成器(粉色模块),是 stable diffusion 和 diffusion 模型的区别所在,也是性能提升的关键,有两点区别:

② Diffusion 模型一般都是直接生成图片,不会有中间生成低维向量的过程,需要更大计算量,在计算速度和资源利用上都比不过 stable diffusion;

那低维空间向量是如何生成的?是在图片信息生成器里由一个 Unet 网络和一个采样器算法共同完成,在 Unet 网络中一步步执行生成过程,采样器算法控制图片生成速度,下面会在第三部分详细介绍这两个模块。Stable Diffusion 采样推理时,生成迭代大约要重复 30~50 次,低维空间变量在迭代过程中从纯噪声不断变成包含丰富语义信息的向量,图片信息生成器里的循环标志也代表着多次迭代过程。

(3) 图片解码器(黄色模块),输入为图片信息生成器的低维空间向量(粉色 4*4 方格),通过升维放大可得到一张完整图片。由于输入到图片信息生成器时做了降维,因此需要增加升维模块。这个模块只在最后阶段进行一次推理,也是获得一张生成图片的最终步骤。

那扩散过程发生了什么?

扩散过程发生在图片信息生成器中,把初始纯噪声隐变量输入到 Unet 网络后结合语义控制向量,重复 30~50 次来不断去除纯噪声隐变量中的噪声,并持续向隐向量中注入语义信息,就可以得到一个具有丰富语义信息的隐空间向量(右下图深粉方格)。采样器负责统筹整个去噪过程,按照设计模式在去噪不同阶段中动态调整 Unet 去噪强度。
更直观看一下,如图 3 所示,通过把初始纯噪声向量和最终去噪后的隐向量都输到后面的图片解码器,观察输出图片区别。从下图可以看出,纯噪声向量由于本身没有任何有效信息,解码出来的图片也是纯噪声;而迭代 50 次去噪后的隐向量已经耦合了语义信息,解码出来也是一张包含语义信息的有效图片。
在这里插入图片描述

图3 可视化输出图片变化

到这里,我们大致介绍了 Stable Diffusion 是什么以及各个模块思路,并且简单介绍了 stable diffusion 的扩散过程。第三部分我们继续分析各个重要组成模块的运行机制,更深入理解 Stable Diffusion 工作原理。

github开源地址

三、应用场景

Stable Diffusion具有广泛的应用场景。首先,它可以应用于文本生成图像领域。通过输入一段文字描述,Stable Diffusion可以生成一张符合描述的清晰图像。这种应用场景非常适合于创意设计、艺术创作等领域。例如,设计师可以通过文字描述来设计一张海报或者服装图案,然后使用Stable Diffusion来生成符合描述的图像。

其次,Stable Diffusion还可以应用于图像修复、超分辨率重建等领域。在这些领域中,Stable Diffusion可以通过对图像进行编码和解码来修复图像中的缺陷或者提高图像的分辨率。这种应用场景非常适合于数字图像处理、计算机视觉等领域。

此外,Stable Diffusion还可以应用于视频制作、游戏设计等领域。在这些领域中,可以使用Stable Diffusion来生成视频中的动态图像或者游戏中的场景和角色。这种应用场景非常适合于影视制作和游戏开发等领域。

github开源地址 https://github.com/CompVis/stable-diffusion

stable-diffusion-ui

由于Stable Diffusion只是针对开发者的程序,需要通过接口或者命令程序去使用生成图片,对普通人非常不友好,所有一款面向普通人UIweb应用出现了,它就是开源项目stable-diffusion-ui。
Stable Diffusion Web UI是一个基于Stable Diffusion模型的应用程序接口,它利用gradio模块搭建出交互程序,可以在低代码GUI中立即访问Stable Diffusion。Stable Diffusion是一个画像生成AI,能够模拟和重建几乎任何可以以视觉形式想象的概念,而无需文本提示输入之外的任何指导。

Stable Diffusion Web UI提供了多种功能,如txt2img、img2img、inpaint等,还包含了许多模型融合改进、图片质量修复等附加升级。用户可以通过调节不同参数生成不同效果,根据自己的需要和喜好进行创作。在界面Extras(更多)中,用户可以找到优化(清晰、扩展)图像的功能;在Settings中,用户可以修改默认参数。
在这里插入图片描述

Stable Diffusion web UI GitHub 地址:https://github.com/AUTOMATIC1111/stable-diffusion-webui

Midjourney和Stable Diffusion

作为目前市场两个主流的AI绘画工具,简单介绍一下他们的共同点和不同点,还有各自的优缺点。

共同点和不同点

Midjourney和Stable Diffusion都是AI绘画工具,它们有一些共同点,但也有很多不同之处。

共同点

  • 都是基于AI技术的绘画工具。
  • 都可以通过输入文字或文本提示来生成图像。
  • 都可以用于创作各种类型的艺术作品,包括插画、漫画、摄影、设计等。

不同点

  • 生成图像的算法不同:Midjourney主要使用的是扩散模型(diffusion model),而Stable Diffusion则基于Latent Diffusion Model(LDM)。
  • 使用的技术栈不同:Midjourney使用了DALL·E模型,而Stable Diffusion则使用了CLIP ViT-L/14文本编码器。
  • 输出图像的质量不同:Midjourney的输出图像质量相对较高,而Stable Diffusion的输出图像质量相对较低。
  • 使用难度不同:Midjourney的使用难度相对较高,需要一定的学习和实践才能掌握,而Stable Diffusion则相对较容易上手。
  • 功能不同:Midjourney具有更多的功能和插件,可以用于创作各种类型的艺术作品,而Stable Diffusion则主要专注于图像生成。
  • 总的来说,Midjourney和Stable Diffusion都是非常优秀的AI绘画工具,它们各有所长,可以根据自己的需求选择合适的工具进行创作。

优缺点

Midjourney的优点

  • 输出图像质量高
  • 功能丰富:Midjourney具有较多的功能和插件,可以用于创作各种类型的艺术作品,例如插画、漫画、摄影、设计等。
  • 支持多种输入方式:Midjourney支持输入文字、图像、视频等多种形式的输入,方便用户进行创作。

Midjourney的缺点:

  • 使用难度较高
  • 需要科学上网
  • 需要付费

Stable Diffusion的优点:

  • 稳定性好
  • 细节表现好
  • 对硬件要求较低:Stable Diffusion对硬件的要求较低,可以在普通的PC上运行。
  • 免费本地使用

Stable Diffusion的缺点

  • 输出图像质量不稳定:Stable Diffusion的输出图像质量有时会不稳定,需要一定的实践和调整才能得到满意的图像。
  • 功能相对较少:Stable Diffusion的功能相对较少,主要专注于图像生成,不如Midjourney那样具有较多的功能和插件。

总的来说,Midjourney和Stable Diffusion都是非常优秀的AI绘画工具,它们各有所长,可以根据自己的需求选择合适的工具进行创作。
Midjourney具有较高的输出图像质量和丰富的功能,但使用难度较高且对硬件要求较高;而Stable Diffusion具有较好的稳定性和细节表现力,但对训练数据要求较高且功能相对较少。

总结

Stable Diffusion是一个引人注目的文本到图像生成模型,具有广泛的应用前景和潜在的发展空间。该模型使用潜在扩散过程来生成图像,具有很高的生成质量和稳定性。它可以应用于文本生成图像、图像修复、超分辨率重建等多个领域,并且具有开源的预训练模型方便用户使用。然而,由于潜在扩散过程的复杂性以及数据和计算资源的限制,Stable Diffusion仍然存在一些挑战和问题需要进一步研究和解决。

后续会讲解Stable Diffusion web UI的安装和使用,教你如何使用Stable Diffusion制作出,你想要它制作的图片!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/175126.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

leetcode-二叉树

B树和B树的区别 B树,也即balance树,是一棵多路自平衡的搜索树。它类似普通的平衡二叉树,不同的一点是B树允许每个节点有更多的子节点。 B树内节点不存储数据,所有关键字都存储在叶子节点上。B树: B树: 二叉…

mac安装并使用wireshark

mac安装并使用wireshark 1 介绍 我们在日常开发过程中,遇到了棘手的问题时,免不了查看具体网络请求情况,这个时候就需要用到抓包工具。比较著名的抓包工具就属:wireshark、fildder。我这里主要介绍wireshark。 2 安装 以mac安装为…

前端开发必备技能!用简单CSS代码绘制三角形,提升用户体验

🎬 江城开朗的豌豆:个人主页 🔥 个人专栏 :《 VUE 》 《 javaScript 》 📝 个人网站 :《 江城开朗的豌豆🫛 》 ⛺️ 生活的理想,就是为了理想的生活 ! 目录 ⭐ 专栏简介 📘 文章引言 一、前…

Docker 容器服务的注册、发现及Docker安全

目录 Docker容器服务的注册和发现 1、什么是服务注册与发现? 2、什么是consul consul的部署 1、环境准备 2、部署consul服务器 1)建立 Consul 服务 2)设置代理,在后台启动 consul 服务端 3)查看集群信息 4&a…

图像视觉特效处理工具:Boris FX Optics 2024.0.1

BorisFX光效插件Optics首发2024版:3大新功能详解 2023年9月15日,全球领先的视觉后期软件开发公司BorisFX推出了旗下知名软件Boris FX Optics的全新2024版本,这款备受后期处理爱好者喜爱的Photoshop插件和独立程序再次升级,为您的…

Docker Consul概述及构建

Docker Consul概述及构建 一、Consul概述1.1、什么是Consul1.2、consul 容器服务更新与发现1.3、服务注册与发现的含义1.4、consul-template概述1.5、registrator的作用 二、consul部署2.1、环境配置2.2、在主节点上部署consul2.3 、配置容器服务自动加入nginx集群2.3.1、安装G…

Redis测试新手入门教程

在测试过程中,我们或多或少会接触到Redis,今天就把在小破站看到的三丰老师课程,把笔记整理了下,用来备忘,也希望能给大家带来亿点点收获。 主要分为两个部分: 一、缓存技术在后端架构中是如何应用的&#…

K8s集群

统一时间:ntpdate(都做) ntpdate -b ntp1.aliyun.com */1 * * * * /usr/sbin/ntpdate -b ntp1.aliyun.com systemctl status docker vi /etc/docker/daemon.json systemctl restart docker m: vim kubernetes.sh cat >> /etc/yum.repos.d/kubernetes.repo…

50元买来的iPhone手机刷机经验

前段时间,家里的iPad被家人误操作,导致iPad变成不可使用状态。自己折腾了半天,没有找到解决办法。没有办法,只好拿到手机维修店去修理,很快就修理好了.其实也很简单--就是对iPad进行了刷机操作。当然我也看到了刷机的方法。今天&a…

优化改进YOLOv5算法:加入SPD-Conv模块,让小目标无处遁形——(超详细)

1 SPD-Conv模块 论文:https://arxiv.org/pdf/2208.03641v1.pdf 摘要:卷积神经网络(CNNs)在计算即使觉任务中如图像分类和目标检测等取得了显著的成功。然而,当图像分辨率较低或物体较小时,它们的性能会灾难性下降。这是由于现有CNN常见的设计体系结构中有缺陷,即使用卷积…

MSQL系列(十) Mysql实战-Join驱动表和被驱动表如何区分

Mysql实战-Join驱动表和被驱动表如何区分 前面我们讲解了Mysql的查询连接Join的算法原理, 我发现大家都知道小表驱动大表,要让小表作为驱动表, 现在有2个问题 查询多表, 到底哪个是驱动表?哪个是被驱动表, 如何区分?索引如何优化,到底是加在驱动表上,还是被驱动表上? &…

初学编程入门基础教学视频,中文编程开发语言工具箱之豪华编辑构件,免费版中文编程软件下载

初学编程入门基础教学视频,中文编程开发语言工具箱之豪华编辑构件,免费版中文编程软件下载 构件的其中一个属性、方法,查找内容,替换内容。 构件工具箱非常丰富,其中该构件在 文本件构件板菜单下。 编程系统化课程总目…

C++类模板再学习

之前已经学习了C类模板;类模板的写法和一般类的写法有很大的差别;不容易熟悉;下面再做一遍; 做一个椭圆类,成员有长轴长度和短轴长度; // ellipse.h: interface for the ellipse class. // //#if !define…

李宏毅老师浅谈机器学习

李宏毅老师浅谈机器学习 引例 - 宝可梦/数码宝贝 分类器如何定义损失函数?- 经验这里定义一个直观的loss函数根据全体数据,得到最好的模型参数(理想)如何衡量现实损失和理想损失接近程度?如何得到跟含所有样本数据集很像的取样数据…

MFC实现堆栈窗口:多个子界面可任意切换

1、效果 在Qt中可使用QStackedWidget控件直接拖动布置即可实现,但在MFC中并未提供类似的控件,因此需要自己简单实现。 2、实现原理 实现原理比较简单,父级对话框在显示的区域部分,通过切换子对话框即可实现。子对话框去掉边框后…

idea使用MyBatisX插件

1.MyBatisX功能 (1).实现mapper和xml的跳转 (2).自动生成java文件,比如mapper、service、dao、pojo 2.安装MyBatisX插件 install后然后重启idea即可 3.使用MyBatieX实现mapper和xml跳转 (1).点击mapper中的红色图标即可跳转到对应的xml方…

一文告诉你样机是什么,分享几个常用的样机模板

一个项目的诞生通常需要经历头脑构思、绘制设计和最终着陆。在这个过程中,样机制作往往是在着陆实践之前进行的。俗话说:“样机使用得好,草稿过早”。样机设计是产品或网站最终设计的生动、静态和视觉表现。它为用户提供了一种模拟现实的方式…

腾讯云轻量应用服务器“月流量”不够用怎么办?

腾讯云轻量应用服务器“月流量”不够用怎么办?超额部分支付流量费,价格为0.8元/GB。腾讯云轻量服务器月流量什么意思?月流量是指轻量服务器限制每月流量的意思,不能肆无忌惮地使用公网,流量超额需要另外支付流量费&…

电子学会C/C++编程等级考试2023年05月(六级)真题解析

C/C++等级考试(1~8级)全部真题・点这里 第1题:字符串插入 有两个字符串str和substr,str的字符个数不超过10,substr的字符个数为3。(字符个数不包括字符串结尾处的’\0’。)将substr插入到str中ASCII码最大的那个字符后面,若有多个最大则只考虑第一个。 时间限制:1000 …

Nginx性能优化

简介 nginx作为常用的web代理服务器,某些场景下对于性能要求还是蛮高的,所以本片文章会基于操作系统调度以及网络通信两个角度来讨论一下Nginx性能的优化思路。 基于操作系统调度进行Nginx优化 CPU工作方式 对于用户进程,CPU会按照下面的…