Azure - 机器学习实战:快速训练、部署模型

本文将指导你探索 Azure 机器学习服务的主要功能。在这里,你将学习如何创建、注册并发布模型。此教程旨在让你深入了解 Azure 机器学习的基础知识和常用操作。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

file

一、开始之前的准备

要深入 Azure 机器学习,首先确保你有一个工作区。如果你还未设置工作区,那么请按照指引,完成必要的资源配置来搭建你的工作区,并了解其基本操作。

请登录到Azure工作室,并选择你的工作区(如果它还未被激活)。

接下来,在工作区内,你可以选择启动或新建一个笔记本:

  • 如果你打算把代码复制到某个单元,那么请新建一个笔记本。
  • 作为另一种选择,你可以在工作室的“示例”区域找到 tutorials/get-started-notebooks/quickstart.ipynb。打开后点击“克隆”,这样这个笔记本就会被保存到你的“文件”里。

file

二、配置内核

当你打开笔记本时,可以在顶部的工具栏中找到并设定一个计算实例(前提是你之前还没有设立过)。

如果发现计算实例处于暂停状态,请点击“启动计算”并耐心等待其启动完成。

当出现提示横幅,要求你完成身份验证时,请点击“身份验证”进行操作。

file

三、建立工作区连接

在开始编写代码之前,我们要确保有办法正确引用工作区。工作区是 Azure 机器学习的核心资源,它为你在 Azure 机器学习上创建的所有项目提供了统一的管理点。

你会为这个工作区连接创建名为 ml_client 的句柄。之后,你可以利用 ml_client 来统筹各种资源和任务。

请在下方的代码单元格里输入你的订阅ID、资源组名以及工作区名。要找到这些信息的方法如下:

  1. 在 Azure 机器学习工作室界面的右上角,点击你的工作区名称。
  2. 从显示的信息中复制工作区、资源组和订阅ID。
  3. 一次复制一个信息,粘贴到代码中后再返回继续复制下一个。

file


from azure.ai.ml import MLClient
from azure.identity import DefaultAzureCredential# authenticate
credential = DefaultAzureCredential()# Get a handle to the workspace
ml_client = MLClient(credential=credential,subscription_id="<SUBSCRIPTION_ID>",resource_group_name="<RESOURCE_GROUP>",workspace_name="<AML_WORKSPACE_NAME>",
)

四、编写训练代码

首先,我们需要制定训练代码并保存为 Python 文件,命名为 main.py。
开始时,为这个脚本设置一个专门的源代码目录。

import ostrain_src_dir = "./src"
os.makedirs(train_src_dir, exist_ok=True)

这段代码负责数据预处理,对数据进行训练和测试的划分。接着,脚本将利用这些数据来培训一个基于树的机器学习模型,并输出该模型。
在整个管道运行过程中,我们会利用 MLFlow 来记录相关参数和性能指标。
接下来的代码单元将使用 IPython magic 命令,把训练脚本保存到你刚刚设定的目录中。

%%writefile {train_src_dir}/main.py
import os
import argparse
import pandas as pd
import mlflow
import mlflow.sklearn
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_splitdef main():"""Main function of the script."""# input and output argumentsparser = argparse.ArgumentParser()parser.add_argument("--data", type=str, help="path to input data")parser.add_argument("--test_train_ratio", type=float, required=False, default=0.25)parser.add_argument("--n_estimators", required=False, default=100, type=int)parser.add_argument("--learning_rate", required=False, default=0.1, type=float)parser.add_argument("--registered_model_name", type=str, help="model name")args = parser.parse_args()# Start Loggingmlflow.start_run()# enable autologgingmlflow.sklearn.autolog()####################<prepare the data>###################print(" ".join(f"{k}={v}" for k, v in vars(args).items()))print("input data:", args.data)credit_df = pd.read_csv(args.data, header=1, index_col=0)mlflow.log_metric("num_samples", credit_df.shape[0])mlflow.log_metric("num_features", credit_df.shape[1] - 1)train_df, test_df = train_test_split(credit_df,test_size=args.test_train_ratio,)#####################</prepare the data>#######################################<train the model>################### Extracting the label columny_train = train_df.pop("default payment next month")# convert the dataframe values to arrayX_train = train_df.values# Extracting the label columny_test = test_df.pop("default payment next month")# convert the dataframe values to arrayX_test = test_df.valuesprint(f"Training with data of shape {X_train.shape}")clf = GradientBoostingClassifier(n_estimators=args.n_estimators, learning_rate=args.learning_rate)clf.fit(X_train, y_train)y_pred = clf.predict(X_test)print(classification_report(y_test, y_pred))####################</train the model>##############################################<save and register model>########################### Registering the model to the workspaceprint("Registering the model via MLFlow")mlflow.sklearn.log_model(sk_model=clf,registered_model_name=args.registered_model_name,artifact_path=args.registered_model_name,)# Saving the model to a filemlflow.sklearn.save_model(sk_model=clf,path=os.path.join(args.registered_model_name, "trained_model"),)############################</save and register model>############################ Stop Loggingmlflow.end_run()if __name__ == "__main__":main()

正如你将在脚本中看到的,一旦模型训练完毕,它会被保存并在工作区中进行注册。这样,这个已注册的模型就可以被用于推理节点了。

为了在“文件”区域看到新创建的文件夹和脚本,你可能需要点击“刷新”按钮。
file

五、配置计算集群

为训练任务提供弹性处理能力
虽然你已有一个计算实例来执行笔记本操作,但下一步你需要设置一个计算集群,专门用于处理训练任务。不同于计算实例的单节点,计算集群能够支持单节点或多节点的 Linux 或 Windows 操作系统,甚至是特定的计算配置,如 Spark。

此处,你应当预先设置一个 Linux 计算集群。关于虚拟机的规格和价格,你可以查阅相关资料。

对于本例子,你只需简单的集群配置,选择 Standard_DS3_v2,拥有 2 个 vCPU 核心和 7 GB 的 RAM。

from azure.ai.ml.entities import AmlCompute# Name assigned to the compute cluster
cpu_compute_target = "cpu-cluster"try:# let's see if the compute target already existscpu_cluster = ml_client.compute.get(cpu_compute_target)print(f"You already have a cluster named {cpu_compute_target}, we'll reuse it as is.")except Exception:print("Creating a new cpu compute target...")# Let's create the Azure Machine Learning compute object with the intended parameters# if you run into an out of quota error, change the size to a comparable VM that is available.\# Learn more on https://azure.microsoft.com/en-us/pricing/details/machine-learning/.cpu_cluster = AmlCompute(name=cpu_compute_target,# Azure Machine Learning Compute is the on-demand VM servicetype="amlcompute",# VM Familysize="STANDARD_DS3_V2",# Minimum running nodes when there is no job runningmin_instances=0,# Nodes in clustermax_instances=4,# How many seconds will the node running after the job terminationidle_time_before_scale_down=180,# Dedicated or LowPriority. The latter is cheaper but there is a chance of job terminationtier="Dedicated",)print(f"AMLCompute with name {cpu_cluster.name} will be created, with compute size {cpu_cluster.size}")# Now, we pass the object to MLClient's create_or_update methodcpu_cluster = ml_client.compute.begin_create_or_update(cpu_cluster)

六、命令设置

既然我们已有了执行任务的脚本和对应的计算集群,接下来你将设置一系列的命令行操作,这些操作或直接调用系统命令,或执行特定脚本。

在这一部分,你需要定义输入变量,比如输入数据、数据拆分比例、学习率以及模型的注册名。你的命令脚本将做以下事情:

利用计算集群执行命令。
使用 Azure 机器学习提供的预设环境来运行训练脚本,这些环境内包含了训练脚本所需的软件和运行时库。后续,在其他教程中,你将了解如何自定义这些环境。
设定命令行操作,例如 python main.py。你可以使用 ${{ … }} 这样的语法在命令中传递输入/输出参数。
在这一示例中,我们将直接从互联网获取数据。

from azure.ai.ml import command
from azure.ai.ml import Inputregistered_model_name = "credit_defaults_model"job = command(inputs=dict(data=Input(type="uri_file",path="https://azuremlexamples.blob.core.windows.net/datasets/credit_card/default_of_credit_card_clients.csv",),test_train_ratio=0.2,learning_rate=0.25,registered_model_name=registered_model_name,),code="./src/",  # location of source codecommand="python main.py --data ${{inputs.data}} --test_train_ratio ${{inputs.test_train_ratio}} --learning_rate ${{inputs.learning_rate}} --registered_model_name ${{inputs.registered_model_name}}",environment="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu@latest",compute="cpu-cluster", #delete this line to use serverless computedisplay_name="credit_default_prediction",
)

七、任务提交

现在,你可以在 Azure 机器学习平台上提交一个作业了。这次,你需要对 ml_client 使用 create_or_update 功能。

ml_client.create_or_update(job)

八、查看任务结果并等待完成

你可以通过点击前一个代码单元的输出链接,在 Azure 机器学习工作室里查看任务的进展。

任务的各类输出,比如指标、结果等,都可以在 Azure 机器学习工作室里查看。当任务完成后,其训练出的模型会被注册到你的工作区。
file

九、部署模型为在线服务

是时候将你的机器学习模型作为一个 Web 服务,部署到 Azure 云上了。
为了部署这个服务,你应当使用已经注册过的机器学习模型。持有一个已经注册过的模型,接下来,你可以着手搭建一个在线端点。需要确保你为端点选择的名称在整个Azure地区是独一无二的。为了确保名字的唯一性,在这个教程里,我们建议采用UUID作为端点名称。

import uuid# Creating a unique name for the endpoint
online_endpoint_name = "credit-endpoint-" + str(uuid.uuid4())[:8]
```python```python
# Expect the endpoint creation to take a few minutes
from azure.ai.ml.entities import (ManagedOnlineEndpoint,ManagedOnlineDeployment,Model,Environment,
)# create an online endpoint
endpoint = ManagedOnlineEndpoint(name=online_endpoint_name,description="this is an online endpoint",auth_mode="key",tags={"training_dataset": "credit_defaults","model_type": "sklearn.GradientBoostingClassifier",},
)endpoint = ml_client.online_endpoints.begin_create_or_update(endpoint).result()print(f"Endpoint {endpoint.name} provisioning state: {endpoint.provisioning_state}")

十、模型部署到终结点

端点构建完毕后,你可以采用入口脚本将模型部署到此端点。值得注意的是,一个端点可以支持多个部署版本,并能够设定特定规则来分流到不同的部署版本。在此,我们会为你创建一个部署版本,它将处理所有的流入流量。对于部署的命名,我们提供了一些建议,如“蓝色”、“绿色”和“红色”,你可以根据自己的喜好选择。

你还可以浏览Azure机器学习工作室的“模型”页面,这有助于你识别已注册模型的最新版本。另外,你也可以利用下面的代码来获取最新的版本信息。

# Let's pick the latest version of the model
latest_model_version = max([int(m.version) for m in ml_client.models.list(name=registered_model_name)]
)
print(f'Latest model is version "{latest_model_version}" ')
# picking the model to deploy. Here we use the latest version of our registered model
model = ml_client.models.get(name=registered_model_name, version=latest_model_version)# Expect this deployment to take approximately 6 to 8 minutes.
# create an online deployment.
# if you run into an out of quota error, change the instance_type to a comparable VM that is available.\
# Learn more on https://azure.microsoft.com/en-us/pricing/details/machine-learning/.blue_deployment = ManagedOnlineDeployment(name="blue",endpoint_name=online_endpoint_name,model=model,instance_type="Standard_DS3_v2",instance_count=1,
)blue_deployment = ml_client.begin_create_or_update(blue_deployment).result()

十一、实例推理测试

完成模型的部署之后,你现在可以对它进行推理测试了。

按照评分脚本中run函数的要求,制定一个示例请求文件。

deploy_dir = "./deploy"
os.makedirs(deploy_dir, exist_ok=True)%%writefile {deploy_dir}/sample-request.json
{"input_data": {"columns": [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22],"index": [0, 1],"data": [[20000,2,2,1,24,2,2,-1,-1,-2,-2,3913,3102,689,0,0,0,0,689,0,0,0,0],[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 10, 9, 8]]}
}# test the blue deployment with some sample data
ml_client.online_endpoints.invoke(endpoint_name=online_endpoint_name,request_file="./deploy/sample-request.json",deployment_name="blue",
)

十二、节点删除

如果你暂时不需要使用该端点,请记得删除,以避免不必要的费用。在进行删除之前,请确保没有其他部署正在使用这个端点。

ml_client.online_endpoints.begin_delete(name=online_endpoint_name)

十三、停止计算实例

如果你暂时不使用计算实例,建议暂停:
在工作室左侧导航栏,点击“计算”。
选择“计算实例”选项卡。
从列表中选择对应的计算实例。
点击顶部工具栏的“停止”按钮。

十四、资源清理

若你决定不再使用已创建的资源,为避免费用,请进行清理:
在Azure门户里,点击左侧的“资源组”。
从列表中找到并选择你所创建的资源组。
点击“删除资源组”,在弹出的确认框里输入资源组名称,并点击“删除”。

file

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/176107.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

scrapy-redis分布式爬虫(分布式爬虫简述+分布式爬虫实战)

一、分布式爬虫简述 &#xff08;一&#xff09;分布式爬虫优势 1.充分利用多台机器的带宽速度 2.充分利用多台机器的ip地址 &#xff08;二&#xff09;Redis数据库 1.Redis是一个高性能的nosql数据库 2.Redis的所有操作都是原子性的 3.Redis的数据类型都是基于基本数据…

超级搜索技术,普通人变强的唯一外挂

搜索效率&#xff1a;Google >微信公众号 >短视频 >百度 1、信息咨询搜索 在Google搜索栏前面加上 “” 限定关键词 intitle 限定标题 allintitle 限定标题多个关键词 intext 限定内容关键词 inurl 限定网址关键词 site 限定网址来源 imagesize 限定图片尺寸 filet…

函数总结

一、main函数 //argc 统计命令行传参的个数 //argv 保存命令行传的具体参数,每个参数当做字符串来存储&#xff0c;const是为了不让main函数修改argv数组里的内容 1.1值传递 此为值传递;形参的值改变不影响实参的值 1.2 地址传递 形参拿到的是实参的地址&#xff0c;实际操…

一文看懂图像格式 RAW、RGB、YUV、Packed/Unpacked、Bayer、MIPI、Planar、Semi-Planar、Interleaved

目录 一、通用属性 1. Packed/Unpacked 2. 压缩/非压缩 二、RAW 1. Bayer格式 2. 分类 3. MIPI RAW 三、RGB 分类 四、YUV 1. YUV与RGB转换 2. 分类 3. 内存计算 五、压缩格式 有的人&#xff0c;错过了&#xff0c;一生再也找寻不到。 本文详细分析各种图像格式…

有效的数独

题目链接 有效的数独 题目描述 注意点 board.length 9board[i].length 9board[i][j] 是一位数字&#xff08;1-9&#xff09;或者 ‘.’ 解答思路 首先判断行是否满足数独条件&#xff0c;再判断列是否满足数独条件&#xff0c;最后再判断划分的3x3方格是否满足数独条件…

Yakit工具篇:WebFuzzer模块之重放和爆破

简介 Yakit的Web Fuzzer模块支持用户自定义HTTP原文发送请求。为了让用户使用简单&#xff0c;符合直觉&#xff0c;只需要关心数据相关信息&#xff0c;Yakit后端(yaklang)做了很多工作。 首先我们先来学习重放请求的操作&#xff0c;在日常工作中可以使用 Web Fuzzer进行请…

32、github的使用小技巧

如何在github中阅读项目代码 如果要完整阅读项目代码&#xff0c; 可能要在文件间来回跳转&#xff0c;就非常麻烦。所以我们往往会把项目代码下载到本地&#xff0c;用更强大的编辑器来阅读。 在github中&#xff0c;可以这样操作&#xff1a; 登录 GitHub 后&#xff0c;直…

【Linux】第四站:Linux基本指令(三)

文章目录 一、时间相关的指令1.指令简介2.使用 二、cal指令三、find指令 -name1.介绍2.使用 四、grep指令1.介绍2.使用 五、zip/unzip指令1.介绍2.zip的安装3.使用 六、tar指令&#xff1a;打包解包&#xff0c;不打开它、直接看内容1.介绍2.使用 七、bc指令八、uname -r指令1.…

【Linux】配置JDKTomcat开发环境及MySQL安装和后端项目部署

目录 一、jdk安装配置 1. 传入资源 2. 解压 3. 配置 二、Tomcat安装 1. 解压开启 2. 开放端口 三、MySQL安装 1. 解压安装 2. 登入配置 四、后端部署 1. 数据库 2. 导入.war包 3. 修改端口 4.开启访问 一、jdk安装配置 打开虚拟机 Centos 登入账号&#xff…

数字孪生技术与VR:创造数字未来

在当今数字化浪潮中&#xff0c;数字孪生和虚拟现实&#xff08;VR&#xff09;技术是两大亮点&#xff0c;它们以独特的方式相互结合&#xff0c;为各个领域带来了创新和无限可能。本篇文章将探讨数字孪生与VR之间的关系&#xff0c;以及它们如何共同开辟未来的新前景。 数字…

Linux 基本语句_9_C语言_生产者消费者

完整版生产者代码&#xff1a; #include <stdio.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> #include <stdlib.h> #include <sys/file.h> #include <string.h>#define MAXLE…

ElasticSearch(ES)8.1及Kibana在docker环境下如何安装

ES基本信息介绍 Elasticsearch&#xff08;简称ES&#xff09;是一个开源的分布式搜索和分析引擎&#xff0c;最初由Elastic公司创建。它属于Elastic Stack&#xff08;ELK Stack&#xff09;的核心组件之一&#xff0c;用于实时地存储、检索和分析大量数据。 以下是Elastics…

云起无垠典型案例入选《2023软件供应链安全洞察》报告

近日&#xff0c;历时6个月&#xff0c;由ISC编制的《2023软件供应链安全洞察》报告&#xff08;以下简称《报告》&#xff09;正式对外发布。《报告》围绕软件供应链安全现状、技术内核、治理指南、落地实践展开&#xff0c;以期为行业从业者提供有价值的信息和洞见&#xff0…

GoLong的学习之路(十六)基础工具之Gin框架

Gin框架介绍及使用&#xff0c;这张不用看内容就知道非常重要&#xff0c;重要到什么地步呢&#xff1f;重要到开发java不会Spring全家桶这种概念。 上几篇文章写的是如何构建骨架&#xff0c;经脉。这一章是将血肉注入。 文章目录 Gin框架RESTful API Gin渲染HTML渲染静态文件…

【mfc/VS2022】计图实验:绘图工具设计知识笔记3

实现类对串行化的支持 如果要用CArchive类保存对象的话&#xff0c;那么这个对象的类必须支持串行化。一个可串行化的类通常有一个Serialize成员函数。要想使一个类可串行化&#xff0c;要经历以下5个步骤&#xff1a; 1、从CObject派生类 2、重写Serialize成员函数 3、使用DE…

PostGreSQL:数据表继承

PostGreSQL手册的简史部分介绍到&#xff1a;被称为PostGreSQL的对象关系型数据库管理系统&#xff0c;由美国加州大学伯克利 分校编写的POSTGRES软件包发展而来。经过十几年的发展&#xff0c;PostGreSQL目前是世界上最先进的开源数据库。 The object-relational database man…

【C++】string类

STL STL(standard template libaray-标准模板库)&#xff1a;是C标准库的重要组成部分&#xff0c;不仅是一个可复用的组件库&#xff0c;而且是一个包罗数据结构与算法的软件框架。 为什么学习string类&#xff1f; 1、C语言中的字符串 C语言中&#xff0c;字符串是以\0结尾…

计组之存储系统

存储器概述 分类 1.按在计算机中的作用&#xff08;层次&#xff09;分类 主存储器。CPU可以直接随机地对其进行访问&#xff0c;也可以和高速缓冲存储器&#xff08;Cache)及辅助存储器交换数据。辅助存储器。辅存的内容需要调入主存后才能被CPU访问。高速缓冲存储器。位于…

SSM咖啡点餐管理系统开发mysql数据库web结构java编程计算机网页源码eclipse项目

一、源码特点 SSM 咖啡点餐管理系统是一套完善的信息系统&#xff0c;结合SSM框架完成本系统&#xff0c;对理解JSP java编程开发语言有帮助系统采用SSM框架&#xff08;MVC模式开发&#xff09;&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主 要采用B/S模式开…

Spring@Lazy是如何解决构造函数循环依赖问题

Spring实例化源码解析之循环依赖CircularReference这章的最后我们提了一个构造函数形成的循环依赖问题&#xff0c;本章就是讲解利用Lazy注解如何解决构造函数循环依赖和其原理。 准备工作 首先创建两个构造函数循环依赖的类&#xff0c;TestA和TestB&#xff0c;代码如下&am…