文章目录
- 简介
- 绝缘检测功能
- 绝缘检测原理
- 绝缘电阻检测的常用方法
- 不平衡电桥法
- 绝缘电阻
- 绝缘电阻的计算
- 绝缘检测开启或关闭
- 为什么根据 V1 < V2 或 V1 ≥ V2 判断是上桥臂并入电阻还是下桥臂并入电阻
简介
绝缘检测是判断动力(正、负)总线与外壳“地”是否存在连接
一些意外情况会发生绝缘故障,比如高压插件老化、积灰、进水、动力走线不合理因(车辆运行)震动摩擦发生破皮
绝缘故障其实就是“电阻”从动力线回路异常“搭”到了不该“搭”到的地方(比如PACK包、车架)
绝缘检测功能
简单来说,绝缘检测就是检测电池包是否漏电
绝缘检测原理
理想状态下,电池包的高压+ 和 高压- 对 车身地的绝缘阻值应该 ∞
Rn、Rp只要有一方阻值足够大,车身地与电池不形成导电回路,那么它们之间就是绝缘的。只有当Rn、Rp绝缘阻值同时降到一定值,高压电池回路对车身地形成漏电回路,才会造成短路的情况。
绝缘电阻检测的常用方法
不平衡电桥法
在每一侧增加了一路开关和一个电阻,通过交替切换两侧的开关改变两极对地的等效电阻,得到正、负极检测电阻上不平衡的检测电压,从而计算出正负极的绝缘电阻,正负极检测电阻上的电压随着开关切换周期变化,当某一极绝缘电阻变低时该侧检测电阻电压变小,对应另一侧检测电阻的电压变大。
优点是能准确的检测正负极的绝缘电阻,缺点是切换开关后电路需要等待一段时间达到稳态,相对来说检测时间长。
绝缘电阻
绝缘检测的目的就是计算绝缘电阻,当绝缘电阻低于某个阈值,则很可能会造成电池短路、漏电,威胁人员安全
Rp
和 Rn
在数学上就是两个未知数
求绝缘电阻就是去求解这两个未知数
因此问题就变成了用电路知识去构建包含Rp
和Rn
的二元一次方程
绝缘电阻的计算
以下面绝缘检测方案为例:
绝缘检测前:K1 K2 K3
全部断开
步骤一:闭合 K1
,开始绝缘检测,整体电路如下所示
V p + :代表电池总压 V 1 :代表上桥臂电压,即 R 5 或 R p 两端电压 V 2 :代表下桥臂电压,即( R 6 + R 7 )两端电压或 R n 两端电压 V A I N 0 :代表 R 2 两端电压,从而推导出 V p + V A I N 1 :代表 R 7 两端电压,从而推导出 V 2 \begin{aligned} & V_{p+} :代表电池总压 \\ & V_{1} :代表上桥臂电压,即 R_{5} 或 R_{p} 两端电压 \\ & V_{2} :代表下桥臂电压,即 (R_{6} + R_{7} )两端电压 或 R_{n} 两端电压 \\ & V_{AIN0} :代表R_{2} 两端电压,从而推导出 V_{p+} \\ & V_{AIN1} :代表R_{7} 两端电压,从而推导出 V_{2} \\ \end{aligned} Vp+:代表电池总压V1:代表上桥臂电压,即R5或Rp两端电压V2:代表下桥臂电压,即(R6+R7)两端电压或Rn两端电压VAIN0:代表R2两端电压,从而推导出Vp+VAIN1:代表R7两端电压,从而推导出V2
根据已知条件列出公式:
V p + = V A I N 0 ∗ R 1 + R 2 R 2 ⟸ V p + = V A I N 0 + V A I N 0 R 2 ∗ R 1 V 2 = V A I N 1 ∗ R 6 + R 7 R 7 ⟸ V p + = V A I N 1 + V A I N 1 R 7 ∗ R 6 V 1 = V p + − V 2 由基尔霍夫电流定理( K C L )得 V 1 R 5 + V 1 R p = V A I N 1 R 7 + V 2 R n \begin{aligned} & V_{p+} = V_{AIN0} * \frac{ R_{1} + R_{2} }{R_{2}} \Longleftarrow V_{p+} = V_{AIN0} + \frac{ V_{AIN0}}{R_{2}}*R_{1} \\ & V_{2} = V_{AIN1} * \frac{ R_{6} + R_{7} }{R_{7}} \Longleftarrow V_{p+} = V_{AIN1} + \frac{ V_{AIN1}}{R_{7}}*R_{6} \\ & V_{1} = V_{p+} - V_{2} \\ & 由基尔霍夫电流定理(KCL)得 \\ \\ & \frac{ V_{1} }{R_{5}} + \frac{ V_{1} }{R_{p}} = \frac{ V_{AIN1} }{R_{7}} + \frac{ V_{2} }{R_{n}} \end{aligned} Vp+=VAIN0∗R2R1+R2⟸Vp+=VAIN0+R2VAIN0∗R1V2=VAIN1∗R7R6+R7⟸Vp+=VAIN1+R7VAIN1∗R6V1=Vp+−V2由基尔霍夫电流定理(KCL)得R5V1+RpV1=R7VAIN1+RnV2
第二步:V1'
和 V2'
的采集与 Rn Rp
电阻的计算
国标中第一次检测出上下桥臂电压后,判断两个电压的大小,来决定第二次并入电阻的位置,即哪个位置电压大,第二次就在这个位置处并入已知电阻
-
若
V1 ≥ V2
,闭合K2
,接入PACK+
侧辅助电阻R3
,重新测得高压地到低压地为V2'
,PACK+
到高压地电压Vp+'
根据已知条件列出公式:
V p + ′ = V A I N 0 ′ ∗ R 1 + R 2 R 2 ⟸ V p + ′ = V A I N 0 ′ + V A I N 0 ′ R 2 ∗ R 1 V 2 ′ = V A I N 1 ′ ∗ R 6 + R 7 R 7 ⟸ V p + ′ = V A I N 1 ′ + V A I N 1 ′ R 7 ∗ R 6 V 1 ′ = V p + ′ − V 2 ′ 由基尔霍夫电流定理( K C L )得 V 1 ′ R 3 + V 1 ′ R 5 + V 1 ′ R p = V A I N 1 ′ R 7 + V 2 ′ R n \begin{aligned} & V_{p+}' = V'_{AIN0} * \frac{ R_{1} + R_{2} }{R_{2}} \Longleftarrow V_{p+}' = V_{AIN0}' + \frac{ V_{AIN0}'}{R_{2}}*R_{1} \\ & V_{2}' = V_{AIN1}' * \frac{ R_{6} + R_{7} }{R_{7}} \Longleftarrow V_{p+}' = V_{AIN1}' + \frac{ V_{AIN1}'}{R_{7}}*R_{6} \\ & V_{1}' = V_{p+}' - V_{2}' \\ & 由基尔霍夫电流定理(KCL)得 \\ \\ & \frac{ V_{1}' }{R_{3}} + \frac{ V_{1}' }{R_{5}} + \frac{ V_{1}' }{R_{p}} = \frac{ V_{AIN1}' }{R_{7}} + \frac{ V_{2}' }{R_{n}} \end{aligned} Vp+′=VAIN0′∗R2R1+R2⟸Vp+′=VAIN0′+R2VAIN0′∗R1V2′=VAIN1′∗R7R6+R7⟸Vp+′=VAIN1′+R7VAIN1′∗R6V1′=Vp+′−V2′由基尔霍夫电流定理(KCL)得R3V1′+R5V1′+RpV1′=R7VAIN1′+RnV2′
联立方程:
{ V 1 R 5 + V 1 R p = V A I N 1 R 7 + V 2 R n V 1 ′ R 3 + V 1 ′ R 5 + V 1 ′ R p = V A I N 1 ′ R 7 + V 2 ′ R n \begin{aligned} \begin{cases} \frac{ V_{1} }{R_{5}} + \frac{ V_{1} }{R_{p}} = \frac{ V_{AIN1} }{R_{7}} + \frac{ V_{2} }{R_{n}}\\ \frac{ V_{1}' }{R_{3}} + \frac{ V_{1}' }{R_{5}} + \frac{ V_{1}' }{R_{p}} = \frac{ V_{AIN1}' }{R_{7}} + \frac{ V_{2}' }{R_{n}}\\ \end{cases} \end{aligned} {R5V1+RpV1=R7VAIN1+RnV2R3V1′+R5V1′+RpV1′=R7VAIN1′+RnV2′
两个未知数,两个方程,求出Rp Rn
-
若
V1 < V2
,闭合K3
,接入PACK+
侧辅助电阻R4
,重新测得高压地到低压地为V2'
,PACK+
到高压地电压Vp+'
根据已知条件列出公式:
V p + ′ = V A I N 0 ′ ∗ R 1 + R 2 R 2 ⟸ V p + ′ = V A I N 0 ′ + V A I N 0 ′ R 2 ∗ R 1 V 2 ′ = V A I N 1 ′ ∗ R 6 + R 7 R 7 ⟸ V p + ′ = V A I N 1 ′ + V A I N 1 ′ R 7 ∗ R 6 V 1 ′ = V p + ′ − V 2 ′ 由基尔霍夫电流定理( K C L )得 V 1 ′ R 5 + V 1 ′ R p = V A I N 1 ′ R 7 + V 2 ′ R n + V 2 ′ R 4 \begin{aligned} & V_{p+}' = V'_{AIN0} * \frac{ R_{1} + R_{2} }{R_{2}} \Longleftarrow V_{p+}' = V_{AIN0}' + \frac{ V_{AIN0}'}{R_{2}}*R_{1} \\ & V_{2}' = V_{AIN1}' * \frac{ R_{6} + R_{7} }{R_{7}} \Longleftarrow V_{p+}' = V_{AIN1}' + \frac{ V_{AIN1}'}{R_{7}}*R_{6} \\ & V_{1}' = V_{p+}' - V_{2}' \\ & 由基尔霍夫电流定理(KCL)得 \\ \\ & \frac{ V_{1}' }{R_{5}} + \frac{ V_{1}' }{R_{p}} = \frac{ V_{AIN1}' }{R_{7}} + \frac{ V_{2}' }{R_{n}} + \frac{ V_{2}' }{R_{4}} \end{aligned} Vp+′=VAIN0′∗R2R1+R2⟸Vp+′=VAIN0′+R2VAIN0′∗R1V2′=VAIN1′∗R7R6+R7⟸Vp+′=VAIN1′+R7VAIN1′∗R6V1′=Vp+′−V2′由基尔霍夫电流定理(KCL)得R5V1′+RpV1′=R7VAIN1′+RnV2′+R4V2′
联立方程:
{ V 1 R 5 + V 1 R p = V A I N 1 R 7 + V 2 R n V 1 ′ R 5 + V 1 ′ R p = V A I N 1 ′ R 7 + V 2 ′ R n + V 2 ′ R 4 \begin{aligned} \begin{cases} \frac{ V_{1} }{R_{5}} + \frac{ V_{1} }{R_{p}} = \frac{ V_{AIN1} }{R_{7}} + \frac{ V_{2} }{R_{n}}\\ \frac{ V_{1}' }{R_{5}} + \frac{ V_{1}' }{R_{p}} = \frac{ V_{AIN1}' }{R_{7}} + \frac{ V_{2}' }{R_{n}} + \frac{ V_{2}' }{R_{4}}\\ \end{cases} \end{aligned} {R5V1+RpV1=R7VAIN1+RnV2R5V1′+RpV1′=R7VAIN1′+RnV2′+R4V2′
两个未知数,两个方程,求出Rp Rn
绝缘检测开启或关闭
-
发生热失控和碰撞故障时,关闭绝缘
发生热失控时,一般代表电池包要燃烧起来,此时检测无效,甚至导致进一步恶化
-
开始充电时,关闭绝缘检测
充电时,充电桩会检测绝缘
为什么根据 V1 < V2 或 V1 ≥ V2 判断是上桥臂并入电阻还是下桥臂并入电阻
这样做不会让小的绝缘电阻继续降低
桥臂分担的电压越小,表示其并联阻值越小,如果继续在这边并联电阻,会导致并联后的阻值更小,计算出来的 绝缘阻值精度就越差