【嵌入式项目应用】__UART自定义通信协议代码实现方法

目录

前言

一、什么是通信协议

二、简单通信协议的问题

三、通信协议的常见内容

1. 帧头

2. 设备地址/类型

3. 命令/指令

4. 命令类型/功能码

5. 数据长度

 6. 数据

7.帧尾

8.校验码

四、通信协议代码实现

1. 消息数据发送

a. 通过串口直接发送每一个字节

b. 通过消息队列发送

c. 用“结构体”代替“数组SendBuf”方式 

d. 其他更多

2. 消息数据接收

a. 常规中断接收

b. 增加超时检测

c. 更多

三、结束语

(* ̄︶ ̄)创作不易!期待你们的 点赞、收藏和评论喔。


前言

我们学习单片机,首先接触的可能是点灯(GPIO),再次就是串口(UART)。

串口是常用的一种通信接口,也是学嵌入式必备掌握的一项知识,但我发现有很多小伙伴只知道用串口输出或者打印一些数据,却不知道如何用串口进行数据传输和通信。

这里就给大家分享一下串口通信协议、自定义通信协议,以及实现的原理。

一、什么是通信协议

通信协议不难理解,就是两个(或多个)设备之间进行通信,必须要遵循的一种协议。

百度百科的解释:

通信协议:是指双方实体完成通信或服务所必须遵循的规则和约定。通过通信信道和设备互连起来的多个不同地理位置的数据通信系统,要使其能协同工作实现信息交换和资源共享,它们之间必须具有共同的语言。

交流什么、怎样交流及何时交流,都必须遵循某种互相都能接受的规则。这个规则就是通信协议。

应该有很多读者都买过一些基于串口通信的模块,市面上很多基于串口通信的模块都是自定义通信协议,有的比较简单,有的相对复杂一点。

举一个很简单的串口通信协议的例子:比如只传输一个温度值,只有三个字节的通信协议:

  1. 帧头
  2. 温度值
  3. 帧尾
5A一字节数值3B

这种看起来是不是很简单?它也是一种通信协议。

只是说这种通信协议应用的场合相对比较简单(一对一两个设备之间),同时,它存在很多弊端。

二、简单通信协议的问题

上面那种只有三个字节的通信协议,相信大家都看明白了。虽然它也能通信,也能传输数据,但它存在一系列的问题。

比如:多个设备连接在一条总线(比如485)上,怎么判断传输给谁?(没有设备信息)

还比如:处于一个干扰环境,你能保障传输数据正确吗?(没有校验信息)

再比如:我想传输多个不确定长度的数据,该怎么办?(没有长度信息)。

上面这一系列问题,相信做过自定义通信的朋友都了解。

所以,在通信协议里面要约定更多的“协议信息”,这样才能保证通信的完整。

三、通信协议的常见内容

基于串口的通信协议通常不能太复杂,因为串口通信速率、抗干扰能力以及其他各方面原因,相对于TCP/IP这种通信协议,是一种很轻量级的通信协议。

所以,基于串口的通信,除了一些通用的通信协议(比如:Modubs、MAVLink)之外,很多时候,工程师都会根据自己项目情况,自定义通信协议。

下面简单描述下常见自定义通信协议的一些要点内容。

(这是一些常见的协议内容,可能不同情况,其协议内容不同)

1. 帧头

帧头,就是一帧通信数据的开头。

有的通信协议帧头只有一个,有的有两个,比如:5A、A5作为帧头。

2. 设备地址/类型

设备地址或者设备类型,通常是用于多种设备之间,为了方便区分不同设备。

这种情况,需要在协议或者附录中要描述各种设备类型信息,方便开发者编码查询。

当然,有些固定的两种设备之间通信,可能没有这个选项。

3. 命令/指令

命令/指令比较常见,一般是不同的操作,用不同的命令来区分。

举例:温度:0x01;湿度:0x02;

4. 命令类型/功能码

这个选项对命令进一步补充。比如:读、写操作。

举例:读Flash:0x01; 写Flash:0x02;

5. 数据长度

数据长度这个选项,可能有的协议会把该选项提到前面设备地址位置,把命令这些信息算在“长度”里面。

这个主要是方便协议(接收)解析的时候,统计接收数据长度。

比如:有时候传输一个有效数据,有时候要传输多个有效数据,甚至传输一个数组的数据。这个时候,传输的一帧数据就是不定长数据,就必须要有数据长度来约束。

有的长度是一个字节,其范围:0x01 ~ 0xFF,有的可能要求一次性传输更多,就用两个字节表示,其范围0x0001 ~ 0xFFFFF。

当然,有的通信长度是固定的长度(比如固定只传输、温度、湿度这两个数据),其协议可能没有这个选项。

 6. 数据

数据就不用描述了,就是你传输的实实在在的数据,比如温度:25℃。

7.帧尾

有些协议可能没有帧尾,这个应该是可有可无的一个选项。

8.校验码

校验码是一个比较重要的内容,一般正规一点的通信协议都有这个选项,原因很简单,通信很容易受到干扰,或者其他原因,导致传输数据出错。

如果有校验码,就能比较有效避免数据传输出错的的情况。

校验码的方式有很多,校验和、CRC校验算是比较常见的,用于自定义协议中的校验方式。

还有一点,有的协议可能把校验码放在倒数第二,帧尾放在最后位置。

四、通信协议代码实现

自定义通信协议,代码实现的方式有很多种,怎么说呢,“条条大路通罗马”你只需要按照你协议要写实现代码就行。

当然,实现的同时,需要考虑你项目实际情况,比如通信数据比较多,要用消息队列(FIFO),还比如,如果协议复杂,最好封装结构体等。

下面分享一些以前用到的代码,可能没有描述更多细节,但一些思想可以借鉴。

1. 消息数据发送

a. 通过串口直接发送每一个字节

这种对于新手来说都能理解,这里分享一个之前DGUS串口屏的例子:


#define DGUS_FRAME_HEAD1          0xA5                     //DGUS屏帧头1
#define DGUS_FRAME_HEAD2          0x5A                     //DGUS屏帧头2#define DGUS_CMD_W_REG            0x80                     //DGUS写寄存器指令
#define DGUS_CMD_R_REG            0x81                     //DGUS读寄存器指令
#define DGUS_CMD_W_DATA           0x82                     //DGUS写数据指令
#define DGUS_CMD_R_DATA           0x83                     //DGUS读数据指令
#define DGUS_CMD_W_CURVE          0x85                     //DGUS写曲线指令/* DGUS寄存器地址 */
#define DGUS_REG_VERSION          0x00                     //DGUS版本
#define DGUS_REG_LED_NOW          0x01                     //LED背光亮度
#define DGUS_REG_BZ_TIME          0x02                     //蜂鸣器时长
#define DGUS_REG_PIC_ID           0x03                     //显示页面ID
#define DGUS_REG_TP_FLAG          0x05                     //触摸坐标更新标志
#define DGUS_REG_TP_STATUS        0x06                     //坐标状态
#define DGUS_REG_TP_POSITION      0x07                     //坐标位置
#define DGUS_REG_TPC_ENABLE       0x0B                     //触控使能
#define DGUS_REG_RTC_NOW          0x20                     //当前RTCS//往DGDS屏指定寄存器写一字节数据
void DGUS_REG_WriteWord(uint8_t RegAddr, uint16_t Data)
{DGUS_SendByte(DGUS_FRAME_HEAD1);DGUS_SendByte(DGUS_FRAME_HEAD2);DGUS_SendByte(0x04);DGUS_SendByte(DGUS_CMD_W_REG);                 //指令DGUS_SendByte(RegAddr);                        //地址DGUS_SendByte((uint8_t)(Data>>8));             //数据DGUS_SendByte((uint8_t)(Data&0xFF));
}//往DGDS屏指定地址写一字节数据
void DGUS_DATA_WriteWord(uint16_t DataAddr, uint16_t Data)
{DGUS_SendByte(DGUS_FRAME_HEAD1);DGUS_SendByte(DGUS_FRAME_HEAD2);DGUS_SendByte(0x05);DGUS_SendByte(DGUS_CMD_W_DATA);                //指令DGUS_SendByte((uint8_t)(DataAddr>>8));         //地址DGUS_SendByte((uint8_t)(DataAddr&0xFF));DGUS_SendByte((uint8_t)(Data>>8));             //数据DGUS_SendByte((uint8_t)(Data&0xFF));
}

b. 通过消息队列发送

在上面基础上,用一个buf装下消息,然后“打包”到消息队列,通过消息队列的方式(FIFO)发送出去。

static uint8_t  sDGUS_SendBuf[DGUS_PACKAGE_LEN];//往DGDS屏指定寄存器写一字节数据
void DGUS_REG_WriteWord(uint8_t RegAddr, uint16_t Data)
{sDGUS_SendBuf[0] = DGUS_FRAME_HEAD1;           //帧头sDGUS_SendBuf[1] = DGUS_FRAME_HEAD2;sDGUS_SendBuf[2] = 0x06;                       //长度sDGUS_SendBuf[3] = DGUS_CMD_W_CTRL;            //指令sDGUS_SendBuf[4] = RegAddr;                    //地址sDGUS_SendBuf[5] = (uint8_t)(Data>>8);         //数据sDGUS_SendBuf[6] = (uint8_t)(Data&0xFF);DGUS_CRC16(&sDGUS_SendBuf[3], sDGUS_SendBuf[2] - 2, &sDGUS_CRC_H, &sDGUS_CRC_L);sDGUS_SendBuf[7] = sDGUS_CRC_H;                //校验sDGUS_SendBuf[8] = sDGUS_CRC_L;DGUSSend_Packet_ToQueue(sDGUS_SendBuf, sDGUS_SendBuf[2] + 3);
}//往DGDS屏指定地址写一字节数据
void DGUS_DATA_WriteWord(uint16_t DataAddr, uint16_t Data)
{sDGUS_SendBuf[0] = DGUS_FRAME_HEAD1;           //帧头sDGUS_SendBuf[1] = DGUS_FRAME_HEAD2;sDGUS_SendBuf[2] = 0x07;                       //长度sDGUS_SendBuf[3] = DGUS_CMD_W_DATA;            //指令sDGUS_SendBuf[4] = (uint8_t)(DataAddr>>8);     //地址sDGUS_SendBuf[5] = (uint8_t)(DataAddr&0xFF);sDGUS_SendBuf[6] = (uint8_t)(Data>>8);         //数据sDGUS_SendBuf[7] = (uint8_t)(Data&0xFF);DGUS_CRC16(&sDGUS_SendBuf[3], sDGUS_SendBuf[2] - 2, &sDGUS_CRC_H, &sDGUS_CRC_L);sDGUS_SendBuf[8] = sDGUS_CRC_H;                //校验sDGUS_SendBuf[9] = sDGUS_CRC_L;DGUSSend_Packet_ToQueue(sDGUS_SendBuf, sDGUS_SendBuf[2] + 3);
}

c. 用“结构体代替数组SendBuf”方式 

结构体对数组更方便引用,也方便管理,所以,结构体方式相比数组buf更高级,也更实用。

(当然,如果成员比较多,如果用临时变量方式也会导致占用过多堆栈的情况)

比如:

typedef struct
{uint8_t  Head1;                 //帧头1uint8_t  Head2;                 //帧头2uint8_t  Len;                   //长度uint8_t  Cmd;                   //命令uint8_t  Data[DGUS_DATA_LEN];   //数据uint16_t CRC16;                 //CRC校验
}DGUS_PACKAGE_TypeDef;

d. 其他更多

串口发送数据的方式有很多,比如用DMA的方式替代消息队列的方式。

2. 消息数据接收

串口消息接收,通常串口中断接收的方式居多,当然,也有很少情况用轮询的方式接收数据。

a. 常规中断接收

还是以DGUS串口屏为例,描述一种简单又常见的中断接收方式:

void DGUS_ISRHandler(uint8_t Data)
{static uint8_t sDgus_RxNum = 0;                //数量static uint8_t sDgus_RxBuf[DGUS_PACKAGE_LEN];static portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;sDgus_RxBuf[gDGUS_RxCnt] = Data;gDGUS_RxCnt++;/* 判断帧头 */if(sDgus_RxBuf[0] != DGUS_FRAME_HEAD1)       //接收到帧头1{gDGUS_RxCnt = 0;return;}if((2 == gDGUS_RxCnt) && (sDgus_RxBuf[1] != DGUS_FRAME_HEAD2)){gDGUS_RxCnt = 0;return;}/* 确定一帧数据长度 */if(gDGUS_RxCnt == 3){sDgus_RxNum = sDgus_RxBuf[2] + 3;}/* 接收完一帧数据 */if((6 <= gDGUS_RxCnt) && (sDgus_RxNum <= gDGUS_RxCnt)){gDGUS_RxCnt = 0;if(xDGUSRcvQueue != NULL)                    //解析成功, 加入队列{xQueueSendFromISR(xDGUSRcvQueue, &sDgus_RxBuf[0], &xHigherPriorityTaskWoken);portEND_SWITCHING_ISR(xHigherPriorityTaskWoken);}}
}

b. 增加超时检测

接收数据有可能存在接收了一半,中断因为某种原因中断了,这时候,超时检测也很有必要。

比如:用多余的MCU定时器做一个超时计数的处理,接收到一个数据,开始计时,超过1ms没有接收到下一个数据,就丢掉这一包(前面接收的)数据。

static void DGUS_TimingAndUpdate(uint16_t Nms)
{sDGUSTiming_Nms_Num = Nms;TIM_SetCounter(DGUS_TIM, 0);                   //设置计数值为0TIM_Cmd(DGUS_TIM, ENABLE);                     //启动定时器
}void DGUS_COM_IRQHandler(void)
{if((DGUS_COM->SR & USART_FLAG_RXNE) == USART_FLAG_RXNE){DGUS_TimingAndUpdate(5);                     //更新定时(防止超时)DGUS_ISRHandler((uint8_t)USART_ReceiveData(DGUS_COM));}
}

c. 更多

接收和发送一样,实现方法有很多种,比如接收同样也可以用结构体方式。但有一点,都需要结合你实际需求来编码。

三、结束语

以上自定义协议内容仅供参考,最终用哪些、占用几个字节都与你实际需求有关。

基于串口的自定义通信协议,有千差万别,比如:MCU处理能力、设备多少、通信内容等都与你自定义协议有关。

有的可能只需要很简单的通信协议就能满足要求。有的可能需要更复杂的协议才能满足。

注意的是:

  1. 以上举例并不是完整的代码(有些细节没有描述出来),主要是供大家学习这种编程思想,或者实现方式。
  2. 一份好的通信协议代码,必定有一定容错处理,比如:发送完成检测、接收超时检测、数据出错检测等等。所以说,以上代码并不是完整的代码。

 


(* ̄︶ ̄)创作不易!期待你们的 点赞收藏评论喔。

本文来源网络,免费分享知识,版权归原作者所有。如涉及作品版权问题,请联系我进行删除!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/177790.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

进程地址空间

一 先前问题解释 1 #include<stdio.h>2 #include<unistd.h>3 int g_val 200;4 int main()5 {6 printf("begin");7 int id fork();8 if(id 0)9 {10 g_val 100;11 printf("我是子进程,pid: %d, 父进程:%d, g_v…

急求!录屏在哪里找?看这里就够了

“电脑的录屏在哪里找呀&#xff1f;已经找了一上午了&#xff0c;真的找不到&#xff0c;有哪位大神知道录屏在哪的&#xff0c;帮帮我&#xff0c;非常感谢&#xff01;” 随着社会的发展&#xff0c;录制电脑屏幕的需求变得越来越普遍。无论是在线教学、游戏直播还是远程会…

【Linux】Linux网络总结图详解

网络是进行分层管理的应用层HTTPHTPPS 传输层&#xff08;UDP、TCP&#xff09;UDPTCPTCP和UDP对比 网络层IP 数据链路层&#xff08;MAC&#xff09;/物理层&#xff08;以太网&#xff09;以太网通信&#xff08;负责网卡之间&#xff09; 网络是进行分层管理的 应用层 HTTP…

HarmonyOS开发:开源一个刷新加载组件

前言 系统Api中提供了下拉刷新组件Refresh&#xff0c;使用起来也是非常的好用&#xff0c;但是风格和日常的开发&#xff0c;有着巨大的出入&#xff0c;效果如下&#xff1a; 显然上面的效果是很难满足我们实际的需求的&#xff0c;奈何也没有提供的属性可以更改&#xff0c;…

nodejs+vue+elementui+python家电销售分析系统设计与实现-计算机毕业设计

系统按照用户的实际需求开发而来&#xff0c;贴近生活。从管理员通过正确的账号的密码进入系统&#xff0c;可以使用相关的系统应用。管理员总体负责整体系统的运行维护&#xff0c;统筹协调。 我们可以利用计算机技术来取代传统的管理模式&#xff0c;实现家电销售分析系统的…

LInux之在同一Tomcat下使用不同的端口号访问不同的项目

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是君易--鑨&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的博客专栏《LInux实战开发》。&#x1f3af;&#x1f3af; …

【RP-RV1126】配置一套简单的板级配置

文章目录 官方配置新建一套新配置新建板级pro-liefyuan-rv1126.mk配置文件新建一个Buildroot的defconfigs文件 吐槽&#xff1a;RP-RV1126 的SDK奇怪的地方make ARCHarm xxx_defconfig 生成的.config文件位置不一样savedefconfig命令直接替换原配置文件坑爹的地方 Buildroot上增…

91 前K个高频元素

前K个高频元素 题解1 大根堆(STL) 给你一个整数数组 nums 和一个整数 k &#xff0c;请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。 示例 1: 输入: nums [1,1,1,2,2,3], k 2 输出: [1,2] 示例 2: 输入: nums [1], k 1 输出: [1] 提示&#xff1a;…

机器人连杆惯量参数辨识(估计)

杆的转动惯量的计算公式是Imr^2。在经典力学中&#xff0c;转动惯量&#xff08;又称质量惯性矩&#xff0c;简称惯矩&#xff09;通常以I 或J表示&#xff0c;SI 单位为 kgm。对于一个质点&#xff0c;I mr&#xff0c;其中 m 是其质量&#xff0c;r 是质点和转轴的垂直距离。…

使用Java与Jsoup库构建有趣的爬虫项目

目录 一、网络爬虫的概念和应用 二、Jsoup库的功能和优势 三、使用Java与Jsoup库编写网络爬虫 四、网络爬虫的法律和道德问题 五、注意事项 六、总结 本文将深入探讨如何使用Java与Jsoup库构建一个实际且有趣的网络爬虫项目。我们将首先简要介绍网络爬虫的概念和应用&…

基于51单片机的智能手机充电器设计

**单片机设计介绍&#xff0c;1660【毕设课设】基于51单片机和MAX1898的智能手机充电器设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 51单片机智能手机充电器设计介绍 51单片机智能手机充电器是一种可以实现智能快速充电的…

华为认证H12-811题库

在VRP平台上&#xff0c;可以通过下面哪种方式返回到上一条历史命令&#xff1f;&#xff08; &#xff09; A、Ctr1U B、Ctr1P C、左光标 D、上光标 试题答案&#xff1a;BD 试题解析&#xff1a;在VRP系统中&#xff0c;ctrlU为自定义快捷键&#xff0c;ct…

Kubernetes 访问控制 - RBAC 鉴权

Author&#xff1a;rab 目录 前言一、Role二、ClusterRole三、RoleBinding四、ClusterRoleBinding总结 前言 API 访问控制有很多&#xff0c;比如 RBAC 鉴权、ABAC 鉴权、Node 鉴权等。自 Kubernetes 1.6 版本以后&#xff0c;RBAC 成为 Kubernetes 的默认访问控制机制。RBAC …

浅谈AcrelEMS-CB商业建筑能源管理系统解决方案-安科瑞 蒋静

1概述 AcrelEMS-CB商业建筑能源管理系统&#xff0c;集电力监控、电能质量监测与治理、电气安全预警、能耗分析、照明控制、新能源使用、能源收费以及设备运维等功能于一体&#xff0c;通过一套系统对商业建筑的能源进行统一监控、统一运维和调度&#xff0c;系统可以通过WEB和…

OpenCV4(C++)——形态学(腐蚀、膨胀)

文章目录 一、腐蚀&#xff08;erode&#xff09;二、膨胀&#xff08;dilate&#xff09;三、形态学操作四、总结 一、腐蚀&#xff08;erode&#xff09; OpenCV 4提供了用于图像腐蚀的erode()函数。 void cv::erode(src, dst, kernel, anchor, iterations, borderType, bo…

自动曝光算法(第一讲)

序言 失业在家无事&#xff0c;想到以后换方向不做自动曝光了&#xff0c;但是自动曝光的工作经验也不能浪费了&#xff0c;准备写一个自动曝光的教学&#xff0c;留给想做自动曝光的小伙伴参考。笔者当时开发自动曝光没有按摄影的avtvevbvsv公式弄&#xff0c;而是按正确的增…

「Java开发指南」如何用MyEclipse搭建Spring MVC应用程序?(一)

本教程将指导开发者如何生成一个可运行的Spring MVC客户应用程序&#xff0c;该应用程序实现域模型的CRUD应用程序模式。在本教程中&#xff0c;您将学习如何&#xff1a; 从数据库表的Scaffold到现有项目部署搭建的应用程序 使用Spring MVC搭建需要MyEclipse Spring或Bling授…

C++使用栈实现简易计算器(支持括号)

使用C实现&#xff0c;使用系统自带stac 支持括号处理支持小数计算支持表达式有效性检查支持多轮输入。 运行结果示例&#xff1a; 代码&#xff1a; #include <iostream> #include <stack> #include <string> using namespace std;//判断是否是数字字符 …

解决pycharm中,远程服务器上文件找不到的问题

一、问题描述 pycharm中&#xff0c;当我们连接到远程服务器上时。编译器中出现报错问题&#xff1a; cant open file /tmp/OV2IRamaar/test.py: [Errno 2] No such file or directory 第二节是原理解释&#xff0c;第三节是解决方法。 二、原理解释 实际上这是由于我们没有设置…

5.5 TCP报文段的首部格式

思维导图&#xff1a; 5.5 TCP报文段的首部格式 基本概念 TCP报文段&#xff1a;包含首部和数据两部分&#xff0c;首部至少20字节。作用&#xff1a;首部字段定义了TCP的功能和行为。长度&#xff1a;首部长度可变&#xff0c;基础首部20字节&#xff0c;可添加选项。 首部…