「直播回放」使用 PLC + OPC + TDengine,快速搭建烟草生产监测系统

在烟草工业场景里,多数设备的自动控制都是通过 PLC 可编程逻辑控制器来实现的,PLC 再将采集的数据汇聚至 OPC 服务器。传统的 PI System、实时数据库、组态软件等与 OPC 相连,提供分析、可视化、报警等功能,这类系统存在一些问题:

  1. 收费是按照测点数进行的,价格昂贵,而且需要有商务谈判才能开始 PoC,无法在购买决策前做足够的验证测试工作;
  2. 系统封闭,如果想集成一个新的 BI、AI 或可视化工具,需要原厂商的支持,十分困难;
  3. 数据的实时分发、分享功能薄弱;
  4. 架构落后,往往基于 Windows,部署维护还十分复杂。

借助 TDengine 3.0 云服务或 TDengine Enterprise(企业版),上述问题便可迎刃而解。作为物联网、工业大数据平台,TDengine 内嵌对 OPC UA/DA、MQTT 等协议的支持。通过网页上简单的配置,无需一行代码,就能将 PLC 采集的数据通过 OPC 连接器源源不断的写入 TDengine,再通过与可视化工具 Grafana、BI 工具(如 Power BI、帆软、永洪)的无缝集成,就可以提供数据的可视化、报表、报警等系列功能。而且由于 TDengine 支持标准的 JDBC、ODBC 接口,众多的 BI、AI 和报表工具都可以无缝集成,而不被厂商绑定。

同时,你可以使用 TDengine Cloud,无商务谈判,免费注册,几分钟内就可以搭建好整个系统,验证是否工作,无任何前期费用和风险。如果验证没问题,可以继续使用云服务,也可以切换到 TDengine Enterprise 做本地化部署。对于云服务,5 万个测点,如果数据采集间隔是一秒,最基础的 TDengine Cloud 入门级就可满足要求,一个月仅需 1200 元。与传统昂贵的工业软件相比,大大降低了投入的成本。

本文以 TDengine Cloud 为例,介绍该方案在烟草制丝车间的具体实现。

在下面例子里,我们将从 OPC Server 采集三个指标:冷床出口水分、计量秤工艺流量及烘丝出口温度,并希望在可视化界面实现以下功能:

  1. 实时监测数采完备率和在线状态:避免数据采集出现异常时不能及时观察到,导致长时间原始数据缺失
  2. 实时监测各指标值、变化趋势曲线:及时掌握生产过程中关键指标的变化

本文中可视化工具选择了开源的 Grafana,你也可以使用国产的 BI 软件来实现。这个方案也适用于 TDengine Enterprise 企业版。

1. TDengine Cloud OPC 接入介绍

为方便不同数据源的接入,涛思打造了一套数据接入方案来接入各种不同类型的数据源。它的核心功能组件是 taosExplorer(TDengine Cloud 为控制台)、taosX Agent 及各类数据源连接器。TDengine 支持两种 OPC 接入:OPC UA、OPC DA。

需要注意的是,TDengine Cloud 仅支持代理模式接入各类数据源。TDengine Enterprise 则是直连、代理两种连接模式均支持。

以某个工厂为例,它的数据中心部署在工厂内部(车间机房、工厂中心机房),各车间通过 OPC 向外提供的数据服务和数据中心处于同一内部网络,这种情况可采用直连模式。如果该工厂的数据中心部署在云端(TDengine Cloud、共有云、上级集团私有云),且工厂与云端之间没有 VPN 连接时,这种情形可采用代理模式。

下面以 TDengine Cloud 云服务+代理模式为例,介绍如何快速搭建 OPC UA+TDengine+Grafana 环境,实现工业 OPC 数据采集的可视化。

2. 部署环境

本文的部署拓扑图如下:

  • 本地 MacBook Pro,Grafana 部署在本机
  • taosX Agent 代理、OPC UA Simulation Server 部署在虚拟机 vm1 上,Ubuntu 20.04
  • TDengine 采用 TDengine Cloud 云服务入门版

提示:

  • TDengine Cloud 的注册或登录请参照 https://cloud.taosdata.com/login
  • OPC UA Server 在本文中将采用 PROSYS OPCUA Simulation Server 5.4.6,下载地址为 Prosys OPC UA Simulation Server - Prosys OPC
  • Grafana 下载地址为 Download Grafana | Grafana Labs

Grafana 数据源安装

Grafana 安装后,需要安装 TDengine 的数据源插件,有两种方式供选择:

  • 在 Grafana Configuration – Datasource 页面中,搜索 TDengine,完成安装【推荐】
  • 通过运行下面的命令完成该插件安装【以 Linux 为例】
bash -c "$(curl -fsSL https://raw.githubusercontent.com/taosdata/grafanaplugin/master/install.sh)"

3. 配置OPC UA Server

为方便展示,本文将采用 PROSYS OPC UA Simulation Server 的功能,模拟生成 10 个双精度点位的随机数。

在 MacBook Pro 上,启动 PROSYS OPC UA Simulation Server。

切换至 Objects 页面,右键点击 Random:BaseDataVariableType,Duplicate Node 创建 10 个采集点位,均为双精度浮点数。完成此步骤后,将生成节点地址 ns=3;i=1008~1017。

生成的点位默认随机数范围是 [-2,2],如需修改,可点击每个点位 Value 标签进行设置。默认的数值生成间隔为 1000ms。

4. 创建代理并部署 taosX Agent

登录 TDengine Cloud 后进入控制台,点击数据写入->数据源->创建新的代理

根据提示,在 vm1 上下载并部署 taosX Agent。

tar xf taosx-agent-xxx-linux-x64.tar.gz
cd taosx-agent-xxx-linux-x64
./install.sh

设置代理名称:agent-vm1

获得 Endpoint 和 token,将其复制、粘贴至 vm1 上的 taosX Agent 的配置文件中:/etc/taos/agent.toml

在 vm1 上启动 taosX Agent:

systemctl start taosx-agent

5. 数据准备

在配置 OPC UA 采集任务之前,还有两个准备工作需要完成:

  • 在 TDengine Cloud 创建 opcdemo 库
  • 创建批量导入用的采集点位 CSV 文件

5.1 创建 opcdemo 库

登录 TDengine Cloud 后进入控制台,点击数据浏览器-> + 创建数据库,输入名称 opcdemo、设置 CACHEMODEL 为 both 后,完成创建。

5.2 创建点位 CSV 文件

为方便批量导入采集点位,TDengine Cloud 提供了以 CSV 文件批量导入点位信息的功能。

根据前面的 OPC UA Simulation Server 创建的 10 个点位信息,创建 CSV 文件。

文件填写说明:

  • point_id: OPC 点位地址
  • tbname: 该点位地址对应 TDengine 中的子表名
  • type: 该点位地址值的数据类型,对应普通列 val。常见的数据类型有 int/bigint/float/double/varchar/nchar/bool,其中 varchar/ncahr 需给出最大允许长度,如 varchar(50)/nchar(50)
  • stable: 子表所属的超级表名
  • 时间戳列:
    • ts_col: OPC 原始采集时间戳的列名,默认 ts,默认为首列时间戳
    • received_ts_col: 【可选】TDengine 接收时间戳对应的列名
    • 一旦配置了 received_ts_col 列,该列将取代 ts_col 成为首列时间戳,ts_col 列将做为普通列保留
  • 普通列:
    • val 列:存放采集值,类型由用户定义,本文中类型为 double
    • quality 列:质量信息,INT 型,系统默认自动创建
  • tag:: 标签列定义,以tag::nchar(10)::unit为例,将创建一个名为 unit,类型为 nchar(10) 的标签列。需要说明的是,每张超级表默认创建两个标签列:point_id VARCHAR(256), point_name VARCHAR(256)
信息点编码,OPC TAG点地址,数据类型,对应超级表表名,OPC原始时间列名,标签列1
tbname,point_id,type,stable,ts_col,tag::nchar(10)::unit
d_1008,ns=3;i=1008,double,stb_double,ts,%H
d_1009,ns=3;i=1009,double,stb_double,ts,kg/h
d_1010,ns=3;i=1010,double,stb_double,ts,℃
d_1011,ns=3;i=1011,double,stb_double,ts,%H
d_1012,ns=3;i=1012,double,stb_double,ts,kg/h
d_1013,ns=3;i=1013,double,stb_double,ts,℃
d_1014,ns=3;i=1014,double,stb_double,ts,%H
d_1015,ns=3;i=1015,double,stb_double,ts,kg/h
d_1016,ns=3;i=1016,double,stb_double,ts,℃
d_1017,ns=3;i=1017,double,stb_double,ts,℃

以上 CSV 文件成功导入后,将在 TDengine 中在指定的库中(本文为 opcdemo)创建一张名为 stb_double 的超级表,并以之为模板创建 10 张子表,名为 d_1008/d_1009…/d_1017。

taos> desc stb_double;field              |          type          |   length    |    note    |
=====================================================================================ts                             | TIMESTAMP              |           8 |            |quality                        | INT                    |           4 |            |val                            | DOUBLE                 |           8 |            |point_id                       | VARCHAR                |         256 | TAG        |point_name                     | VARCHAR                |         256 | TAG        |unit                           | NCHAR                  |          10 | TAG        |
Query OK, 6 row(s) in set (0.008236s)

6. 创建数据采集任务

登入控制台,点击数据写入->数据源->添加数据源

填写数据源名称,选择类型:OPC-UA,代理选刚新建的代理 agent-vm1,目标数据库 opcdemo,输入 OPC UA Server 的服务地址。

本文代理模式下,OPC UA Server 部署在vm1上,服务地址填写 127.0.0.1 即可,端口号及详细信息参见 PROSYS Simulation Server 的 Status 页面。

点击“选择文件”按钮,进入 CSV 文件导入界面。

采集间隔设置为 1 秒,采集模式设置为 observe。

本次 CSV 共采集 10 个点位,为优化写入性能,将批次大小调整为 10。如有必要,可选择开启 Debug 日志。

7. 数据采集验证

登入控制台,点击数据浏览器->Sql,执行多次最新数据查询语句,观察查询结果。如结果行时间戳单调递增,则表示数据采集链路工作正常,数据已正常入库了。

select last_row(*) from opcdemo.stb_double;

8. 数据可视化

Grafana 部署在本地 MacBook Pro 上,希望访问云服务上的 TDengine 实例中的 opcdemo 库的数据。根据云服务控制台【工具-Grafana】页面的指引,填入 Host、Cloud Token,删除 User、Password,保存退出。

选择 Import Dashboard,点击 Upload JSON file 导入 OPCDemo.json 文件(文件代码详见 OPC Demo-0925.json - TDengine | 涛思数据),选择对应的 TDengine 的 DataSource,完成 Dashboard 导入。

点击 OPC Demo Dashboard,打开该仪表板,可以观察到实时数据的变化。

9. OPC Demo Dashboard 使用说明

该仪表盘可以选择三个物理量作为监控对象:metric01、metric02、metric03,分别对应:冷床出口水分、工艺流量、烘丝出口温度,位于第一行,可通过下拉框选择;用户可设置设备离线阈值 offline_threshold(单位:秒),通过下拉框选择。

首行三个控件,分别是 metric01 的分钟级数采完备率、整体数采完备率以及在线状态。

在烟草生产行业,数据采集是否有缺漏,是企业数据运营管理的基础。在本文中我们提出两个指标来衡量数采完备:分钟级数采完备率、整体数采完备率。

9.1 分钟级数采完备率

算法说明:以一分钟划分时间窗口,分段计算当前时间区间(最近 5/15/30 分钟…)内 metric01 物理量采集点数除以 60 后的比值 – 默认数据生成间隔为 1000ms,即 1 秒。

select _wstart, count(*)/60 from opcdemo.$metric01 where _c0 >= $from and _c0 < $to interval(1m) limit 100 offset 1

9.2 整体数采完备率

算法说明:计算 metric01 物理量采集点数除以当前时间区间内秒级跨度的比值,spread 计算的时间值单位与 opcdemo 库的 precision 一致,默认为 ms。

select count(*)/(spread(_c0 )/1000+1) from opcdemo.$metric01 where _c0 >= $from and _c0 < $to

9.3 在线状态

设备是否按设计要求及时上报数据,可通过在线状态的监测来实现。如在指定时间阈值内无采集数据到达,显示红色 offline 以示警。

算法说明:判断 metric01 物理量在指定离线阈值内是否有数据入库,如有则判 Online,否则判 Offline。

select count(*) from (select last_row(*) from opcdemo.$metric01 where _c0 >= now-$offline_thresholds)

三个 Gauge 仪表表头控件,用于显示烘丝出口水分、工艺流量、烘丝出口温度的最新值。

select last_row(val) from opcdemo.$metric01

三个 TimeSeries 曲线控件,用于显示烘丝出口水分、工艺流量、烘丝出口温度在当前时间区间内的动态曲线,显示值为动态时间窗口内采集值的算术平均值。

select _wstart, avg(val) from opcdemo.$metric01 where _c0 >= $from and _c0 < $to interval($interval) fill(null)

以上以制丝车间的几个典型参数为例,介绍了如何利用 TDengine 的 OPC 连接器,将数据采集入库,并通过 Grafana 将这些参数以动态可视化方式直观地呈现出来。

掌握了以上基本语法,大家可以举一反三,结合自己的实际业务要求,不用写一行代码,就可以轻松地定制自己专属的 Grafana Dashboard,进行实时采集数据监控了。

10. 开发实时业务应用

前面阐述了如何基于 TDengine 实现 OPC 数采接入、持久化,以及基于 Grafana 方便地实现实时数据的可视化。估计会有读者想更进一步了解如何基于 TDengine 来开发实时业务应用,如 SPC 统计过程控制能否方便地实现呢?

下面我们简单介绍一下,如何利用 TDengine 来开发 SPC 实时业务应用。

SPC:统计过程控制是工业界广泛使用的质量分析工具,它采用统计技术对生产过程的某个物理量进行实时监控计算,快速识别出生产过程中产品质量的随机波动与异常波动,对生产过程的异常趋势提出预警,以便生产管理人员及时采取措施,消除异常,恢复过程的稳定,从而达到提高和控制质量的目的。

SPC 的第一步是计算标准差。TDengine 提供 stddev 标准差函数,方便用户快速从时序数据算得标准差 σ。

通过实时查询可获取指定时间段的时序数据,再通过 TDengine 内嵌函数即可直接算得:均值 μ(avg)、最大(max)、最小(min)、跨距(spread)。

结合前面算得的标准差 σ、该物理量设计的合格上下限范围 USL-LSL、目标值 T,可算得 SPC 各过程参数:Cp/Cr/Cpu/Cpl/Cpk/Cpm/Pp/Pr/Ppu/Ppl/Ppk/Ppm。

TDengine 提供各种主流编程语言如 C/C++、Java、Go、RUST、Python、C# 的驱动程序,也提供 RESTful 接口,支持 SQL 语法,因此应用开发的学习成本几乎为零,十分简单。

11. 总结

很多用户对于如何快速、便捷呈现工业现场的实时时序数据比较畏惧,觉得需要耗费大量人力进行应用开发才能实现,影响了时序数据快速有效的利用。其实,和 IT 运维采用 Telegraf+TDengine+Grafana 一样,烟草生产企业可以非常方便地利用 TDengine 的 OPC 接入能力,通过搭建 OPC+TDengine+Grafana 方案,快速实现低代码的业务数据监控。

需要说明的是,本文的例子是一较简单的场景:taosX Agent 代理和 OPC UA Server 部署在同一节点上。其他的场景可以从这个场景中演变而来,如:

  • taosX Agent 与 OPC UA Server 分别部署在不同节点上
  • 部署多个 taosX Agent,每个 Agent 对接多个 OPC UA Server

实际部署拓扑都可以按需规划、实施,取决于您实际的部署需求。

TDengine 不仅支持 OPC,也支持 MQTT, PI System, Wonderware 等数据源的无缝接入,受篇幅所限本文不多做介绍,仅分享基于 TDengine Cloud 提供 OPC+TDengine+Grafana 方案的具体实现。这套方案同样可以基于 TDengine Enterprise 企业版来实现,如果您有这样的需求,请联系北京涛思商务团队获取相关资源。

直播视频回放:

TDengine 行业产品经理聊聊以烟草行业为例,如何基于 PLC + OPC + TDengine 快速搭建工业生产监测系统_哔哩哔哩_bilibili


 了解更多 TDengine Database的具体细节,可在GitHub上查看相关源代码。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/179523.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

判断字符串是否为json

//营业时间返回数组String businessDate merchantInfoResp.getBusinessDate();Object obj JSON.parse(businessDate);if (obj instanceof JSONArray) {merchantInfoResp.setBusinessDateDesc(JSON.parseArray(JSON.toJSONString(obj), Integer.class));} else {//营业日期判断…

最近面试者对接口测试的理解真把我给笑拥了~

&#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试」资…

MySQL 优化思路篇

MySQL 优化思路篇 1、MySQL 查询的优化步骤2、查询系统性能参数3、慢查询日志定位问题3.1、开启慢查询日志参数3.2、查看慢查询数目3.3、慢查询日志的分析工具 mysqldumpslow3.4、关闭慢查询日志3.5、慢查询日志的删除与重建 4、SHOW PROFILE &#xff1a;查看SQL执行成本 1、…

IntelliJ IDEA Services工具栏运行不显示端口问题解决

问题 如Spring Boot服务启动时&#xff0c;端口不显示。 解决 1、 清理所有缓存 2、 关闭IntelliJ IDEA后&#xff0c;到C:\Users\&#xff08;你自己的用户名&#xff09;\AppData\Local\Temp路径把所有文件都删除&#xff0c;因为时一个缓存&#xff0c;不影响其他软件…

智慧灯杆网关智能化选择(网关助力城市完整项目方案)

在当代城市发展中&#xff0c;智慧照明作为一项重要的技术创新&#xff0c;正逐渐改变着我们的城市生活。作为城市智慧照明的核心设备&#xff0c;智慧灯杆网关SG600凭借出色的性能和创新的解决方案&#xff0c;成为了引领城市智慧照明的完美选择。本文将详细介绍SG600的特点和…

Java实现Hive UDF详细步骤 (Hive 3.x版本,IDEA开发)

这里写目录标题 前言1. 新建项目2.配置maven依赖3.编写代码4.打jar包5.上传服务器6.代码中引用 前言 老版本编写UDF时&#xff0c;需要继承 org.apache.hadoop.hive.ql.exec.UDF类&#xff0c;然后直接实现evaluate()方法即可。 由于公司hive版本比较高&#xff08;3.x&#x…

【有源码】基于Python的篮球人才管理系统Springboot的篮球竞赛管理系统(源码、调试、lw、开题报告、ppt)

&#x1f495;&#x1f495;作者&#xff1a;计算机源码社 &#x1f495;&#x1f495;个人简介&#xff1a;本人七年开发经验&#xff0c;擅长Java、Python、PHP、.NET、微信小程序、爬虫、大数据等&#xff0c;大家有这一块的问题可以一起交流&#xff01; &#x1f495;&…

Cookie+Session

目录 Cookie和Session 实现模拟登录 1.编写登录页面 2.编写LoginServlet处理登录请求 3.编写indexServlet显示登录页面 Cookie和Session Cookie:浏览器提供的持久化储存数据的机制。把信息保存到客户端&#xff0c;后续访问服务器的时候带着cookie数据进行访问。 服务器通…

2023NOIP A层联测23-涂鸦

有一面由 n m n\times m nm 个格子组成的墙&#xff0c;每个格子要么是黑色&#xff0c;要么是白色。你每次将会进行这样的操作&#xff1a;等概率随机选择一个位置 ( x , y ) (x,y) (x,y)&#xff0c;和一个颜色 c c c&#xff08;黑色或者白色&#xff09;&#xff08; 1…

Redo Log(重做日志)的刷盘策略

1. 概述 Redo Log&#xff08;重做日志&#xff09;是 InnoDB 存储引擎中的一种关键组件&#xff0c;用于保障数据库事务的持久性和崩溃恢复。InnoDB 将事务所做的更改先记录到重做日志&#xff0c;之后再将其应用到磁盘上的数据页。 刷盘策略&#xff08;Flush Policy&#x…

如何记录每天的工作日程?电脑手机通用的日程管理软件

在工作时间有限&#xff0c;但工作任务愈加繁多的现在职场中&#xff0c;要求每一个职场人士做好高效日程管理。通过高效管理日程&#xff0c;我们可以更好地组织和安排任务&#xff0c;合理分配时间和优先级&#xff0c;这有助于我们更专注地进行工作&#xff0c;减少时间的浪…

MCU HardFault_Handler调试方法

一.获取内核寄存器的值 1.在MDK的DEBUG模式下&#xff0c;当程序出现跑飞后&#xff0c;确定卡死在HardFault_Handler中断处 2. 通过Register窗口读取LR寄存器的值来确定当前系统使用堆栈是MSP还是PSP LR寄存器值堆栈寄存器0xFFFFFFF9MSP寄存器0xFFFFFFFDPSP寄存器 如下图所…

【JavaEE】cookie和session

cookie和session cookie什么是 cookieServlet 中使用 cookie相应的API Servlet 中使用 session 相应的 API代码示例: 实现用户登陆Cookie 和 Session 的区别总结 cookie 什么是 cookie cookie的数据从哪里来? 服务器返回给浏览器的 cookie的数据长什么样? cookie 中是键值对…

HR模块开发(1):简单的开发流程和注意事项

HR模块开发 一、模块概述 人力资源管理解决方案关注3个领域:每位雇员都发展和维护着‘公司内’和‘公司外’的种种‘关系’。运用科技,强化这些关系,可以提高忠诚度和生产力,公司整体得到商业价值。 员工关系管理员工职业生命周期管理员工事务处理管理HR模块的基本知识和构…

[Unity][VR]透视开发系列4-解决只看得到Passthrough但看不到Unity对象的问题

【视频资源】 视频讲解地址请关注我的B站。 专栏后期会有一些不公开的高阶实战内容或是更细节的指导内容。 B站地址: https://www.bilibili.com/video/BV1Zg4y1w7fZ/ 我还有一些免费和收费课程在网易云课堂(大徐VR课堂): https://study.163.com/provider/480000002282025/…

算法通关村第四关-黄金挑战基础计算器问题

大家好我是苏麟 , 今天带来栈的比较难的问题 . 计算器问题 基础计算器 LeetCode 224 描述 : 给你一个字符串表达式 s &#xff0c;请你实现一个基本计算器来计算并返回它的值。 s 由数字、、-、(、)、和 组成s 表示一个有效的表达式 不能用作一元运算(例如&#xff0c; …

2014年亚太杯APMCM数学建模大赛A题无人机创造安全环境求解全过程文档及程序

2014年亚太杯APMCM数学建模大赛 A题 无人机创造安全环境 原题再现 20 国集团&#xff0c;又称 G20&#xff0c;是一个国际经济合作论坛。2016 年第 11 届 20 国集团峰会将在中国召开&#xff0c;这是继 APEC 后中国将举办的另一个大型峰会。此类大型峰会&#xff0c;举办城市…

【计算机网络】浏览器的通信能力

1. 用户代理 浏览器可以代替用户完成http请求&#xff0c;代替用户解析响应结果&#xff0c;所以我们称之为用户代理 user agent。 浏览器两大核心能力&#xff1a; 自动发送请求的能力自动解析响应的能力 1.1 自动发送请求的能力 用户在地址栏输入了一个url地址&#xff0…

[双指针] (四) LeetCode 18.四数之和

[双指针] (四) LeetCode 18.四数之和 文章目录 [双指针] (四) LeetCode 18.四数之和题目解析解题思路代码实现总结 18. 四数之和 题目解析 (1) 从一个数组中找一个目标值target (2) target nums[a] nums[b] nums[c] nums[d] 解题思路 和上一道题三数之和一样, 我们把四…

Android笔记(十一):Compose中使用ViewModel

通过ViewModel组件用于保存视图中需要的数据。ViewModel主要目的是将与用户界面相关的数据模型和应用程序的逻辑与负责实际显示和管理用户界面以及与操作系统交互的代码分离开来&#xff0c;为UI界面管理数据。常见的管理方式主要有&#xff1a;LiveData和StateFlow两种形式来实…