WordCount
需求:统计一段文字中,每个单词出现的频次
添加依赖
<properties><flink.version>1.17.0</flink.version></properties><dependencies><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients</artifactId><version>${flink.version}</version></dependency></dependencies>
1.批处理
基本思路:先逐行读入文件数据,然后将每一行文字拆分成单词;接着按照单词分组,统计每组数据的个数。
1.1.数据准备
resources目录下新建一个 input 文件夹,并在下面创建文本文件words.txt
words.txt
hello flink
hello world
hello java
1.2.代码编写
public class BatchWordCount {public static void main(String[] args) throws Exception {// 1. 创建执行环境ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();// 2. 从文件读取数据 按行读取(存储的元素就是每行的文本)String filePath = Objects.requireNonNull(BatchWordCount.class.getClassLoader().getResource("input/words.txt")).getPath();DataSource<String> lineDS = env.readTextFile(filePath);// 3. 转换数据格式FlatMapOperator<String, Tuple2<String, Long>> wordAndOne = lineDS.flatMap(new FlatMapFunction<String, Tuple2<String, Long>>() {@Overridepublic void flatMap(String line, Collector<Tuple2<String, Long>> out) {String[] words = line.split(" ");for (String word : words) {out.collect(Tuple2.of(word, 1L));}}});// 4. 按照 word 进行分组UnsortedGrouping<Tuple2<String, Long>> wordAndOneUG = wordAndOne.groupBy(0);// 5. 分组内聚合统计AggregateOperator<Tuple2<String, Long>> sum = wordAndOneUG.sum(1);// 6. 打印结果sum.print();}
}
打印结果如下:(结果正确)
上述代码是基于 DataSet API 的,也就是对数据的处理转换,是看作数据集来进行操作的。
事实上 Flink 本身是流批统一
的处理架构,批量的数据集本质上也是流,没有必要用两套不同的 API 来实现。从Flink 1.12 开始,官方推荐的做法是直接使用 DataStream API,在提交任务时通过将执行模式设为BATCH
来进行批处理:
bin/flink run -Dexecution.runtime-mode=BATCH BatchWordCount.jar
2.流处理
DataStreamAPI可以直接处理批处理和流处理的所有场景
2.1读取文件
还是上述words.txt文件
代码实现:
public class StreamWordCount {public static void main(String[] args) throws Exception {// 1. 创建流式执行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 2.读取文件String filePath = Objects.requireNonNull(StreamWordCount.class.getClassLoader().getResource("input/words.txt")).getPath();DataStreamSource<String> lineStream = env.readTextFile(filePath);// 3. 转换、分组、求和,得到统计结果SingleOutputStreamOperator<Tuple2<String, Long>> sum = lineStream.flatMap(new FlatMapFunction<String, Tuple2<String, Long>>() {@Overridepublic void flatMap(String line, Collector<Tuple2<String, Long>> out) throws Exception {String[] words = line.split(" ");for (String word : words) {out.collect(Tuple2.of(word, 1L));}}}).keyBy(data -> data.f0).sum(1);// 4. 打印sum.print();// 5. 执行env.execute();}
}
与批处理程序BatchWordCount有几点不同:
- 创建执行环境的不同,流处理程序使用的是
StreamExecutionEnvironment
。 - 转换处理之后,得到的数据对象类型不同。
- 分组操做调用的是 keyBy 方法,可以传入一个匿名函数作为键选择器(KeySelector),指定当前分组的key。
- 最后执行execute方法,开始执行任务。
2.2读取Socket文件流
实际生产中,真正的数据多是无界的,需要持续地捕获数据。为了模拟这种场景,可以监听 socket 端口
,然后向该端口不断的发送数据。
- 简单改动,只需将StreamWordCount 代码中读取文件数据的
readTextFile
方法,替换成读取socket文本流的方法socketTextStream
。
public class StreamSocketWordCount {public static void main(String[] args) throws Exception {// 1. 创建流式执行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 2.读取文件DataStreamSource<String> lineStream = env.socketTextStream("124.222.253.33", 7777);// 3. 转换、分组、求和,得到统计结果SingleOutputStreamOperator<Tuple2<String, Long>> sum = lineStream.flatMap(new FlatMapFunction<String, Tuple2<String, Long>>() {@Overridepublic void flatMap(String line, Collector<Tuple2<String, Long>> out) throws Exception {String[] words = line.split(" ");for (String word : words) {out.collect(Tuple2.of(word, 1L));}}}).keyBy(data -> data.f0).sum(1);// 4. 打印sum.print();// 5. 执行env.execute();}
}
- 在 Linux 环境的主机 124.222.253.33 上,执行下列命令,发送数据进行测试
nc -lk 7777
注意:要先启动端口,后启动 StreamSocketWordCount 程序,否则会报超时连接异常。
- 从Linux发送数据
1、输入“hello flink”,输出如下内容
2、再输入“hello world”,输出如下内容
Flink 还具有一个类型提取系统,可以分析函数的输入和返回类型,自动获取类型信息,从而获得对应的序列化器和反序列化器。但是,由于 Java 中泛型擦除
的存在,在某些特殊情况下(比如 Lambda 表达式中),自动提取的信息是不够精细的,对于 flatMap 里传入的 Lambda 表达式,系统只能推断出返回的是Tuple2类型,而无法得到 Tuple2<String, Long>。需要显式地告诉系统当前的返回类型,才能正确地解析出完整数据